Skip to main content
Log in

A Multiscale Approach to Studying the High Strain-Rate Deformations of Glass-Fiber-Reinforced Polymer-Matrix Composites

  • Published:
Mechanics of Composite Materials Aims and scope

The mechanical properties and failure of composites depend on their microscopic characteristics (constituent properties and microscopic structural features). The continuum theory cannot explain the failure mechanism of composite materials in terms of connecting microscopic damage to the macroscopic fracture. In this paper, a multiscale method combining the High-Fidelity Generalized Method of Cells with ANSYS/LS-DYNA is presented. The method is validated by comparing calculations with experimental results. A nonlinear analysis of glass-fiber-reinforced polymer-matrix composites at high strain rates is performed. The results obtained show that the method presented can be effectively used to predict the mechanical properties of polymer-matrix composites and the increase in stiffness of the composites with growing strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. D. A. Bulgakov, Y. A. Gorenberg, and A. M. Kuperman, “Orientation of anisotropic carbon particles in the matrix of reinforced plastics by an AC electric field,” Mech. Compos. Mater., 54, 647-654 (2018).

    Article  CAS  Google Scholar 

  2. J. Montesano, H. Chu, and C. V. Singh, “Development of a physics-based multiscale progressive damage model for assessing the durability of wind turbine blades,” Compos. Struct., 141, 50-62 (2016).

    Article  Google Scholar 

  3. D. H. Zhang, D. Q. Bai, J. B. Liu, Z. Guo, and C. Guo, “Formability behaviors of 2a12 thin-wall part based on DYNAFORM and stamping experiment,” Compos. Part B-Eng., 55, 591-598 (2013)

    Article  CAS  Google Scholar 

  4. D. H. Zhang, C. Guo, and X. P. Du, “Uniaxial tensile fracture of stainless steel-aluminum bi-metal,” P. I. Mech. Eng. C-J. Mec., 225, 1061-1068 (2011).

    Article  CAS  Google Scholar 

  5. D. H. Zhang, G. Z. Xie, Y. Q. Li, and J. X. Liu, “Strain and mechanical properties of VCM multi-layer sheet and their composites using digital speckle correlation method,” Appl. Optics., 54, 7534-7541 (2015).

    Article  Google Scholar 

  6. J. J. Ye, H. Cai, Y. K. Wang, Z. Jing, B. Q. Shi, Y. Y. Qiu, and X.F. Chen, “Effective mechanical properties of piezoelectric-piezomagnetic hybrid smart composites,” J. Intel. Mat. Syst. Struct., 29, 1711-1723 (2018).

    Article  Google Scholar 

  7. J. J. Ye, Y. Y. Qiu, X. F. Chen, and J. Ma, “Initial and final failure strength analysis of composites based on a micromechanical method,” Compos. Struct., 125, 328-335 (2015).

    Article  Google Scholar 

  8. L. Bernd, “Stress field calculation around a particle in elastic-plastic polymer matrix under multiaxial loading as basis for the determination of adhesion strength,” Compos. Interface., 23, 1-14 (2016).

    Article  CAS  Google Scholar 

  9. B. Mohammadi, M. Abbaszadeh, and A. Keshmiri, “Variational approach development in analysis of matrix cracking and induced delamination of cross-ply composite laminates subjected to in-plane shear loading,” Mech. Adv. Mater. Struct., 25, 481-499 (2018).

    Article  Google Scholar 

  10. M. Y. Matveev, A. C. Long, and I. A. Jones, “Modeling of textile composites with fiber strength variability,” Compos. Sci. Technol., 105, 44-50 (2014).

    Article  CAS  Google Scholar 

  11. Z. Lu, C. Wang, and B. Xia, “Effect of interfacial properties on the thermophysical properties of 3D braided composites: 3D multiscale finite element study,” Polym. Compos., 35, 1690-1700 (2014).

    Article  CAS  Google Scholar 

  12. S. Li, S. Roy, and V. Unnikrishnan, “Modeling of fracture behavior in polymer composites using concurrent multiscale coupling approach,” Mech. Adv. Mater. Struct., 25, 1342-1350 (2018).

    Article  CAS  Google Scholar 

  13. Y. Cai and H. Sun, “Prediction on viscoelastic properties of three-dimensionally braided composites by multiscale model,” J. Mater. Sci., 48, 6499-6508 (2013).

    Article  CAS  Google Scholar 

  14. M. Sardar, Z. Navid, and G. Thomas, “A comprehensive multiscale analytical modelling framework for predicting the mechanical properties of strand-based composites,” Wood Sci. Technol., 49, 59-81 (2015).

    Article  CAS  Google Scholar 

  15. J. Kato, D. Yachi,·K. Terada, and T. Kyoya, “Topology optimization of microstructure for composites applying a decoupling multiscale analysis,” Struct. Multidisc. Optim., 49, 595-608 (2014).

    Article  Google Scholar 

  16. S. K. Georgantzinos, G. I. Giannopoulos, K. N. Spanos, and N. K. Anifantis, “A heterogeneous discrete approach of interfacial effects on multiscale modelling of carbon nanotube and graphene based composites,” Model. Carbon Nano. Grap. Compos., 188, 83-109 (2014).

    CAS  Google Scholar 

  17. G. Han, Z. Guan, and Z. Li., “Multiscale modeling and damage analysis of composite with thermal residual stress,” Appl. Compos. Mater., 22, 289-305 (2015).

    Article  Google Scholar 

  18. M. Meng, M. J. Rizvi, H. R. Le, and S. M. Grove, “Multiscale modelling of moisture diffusion coupled with stress distribution in CFRP laminated composites.” Compos. Struct., 138, 295-304 (2016).

    Article  Google Scholar 

  19. J. J. Ye, C. C. Chu, H. Cai, Y. K. Wang, X. J. Qiao, Z. Zhai, and X.F. Chen, “A multiscale modeling scheme for damage analysis of composite structures based on the High-Fidelity Generalized Method of Cells.” Compos. Struct., 206, 42-53 (2018).

    Article  Google Scholar 

  20. J. J. Ye, C. C. Chu, H. Cai, X. N. Hou, B. Q. Shi, S. H. Tian, X. F. Chen, and J. Q. Ye, “A multiscale model for studying failure mechanisms of composite wind turbine blades.” Compos. Struct., 212, 220-229 (2019).

    Article  Google Scholar 

  21. A. Saikat, D. K. Mondal, K. S. Ghosh, and A. K Mukhopadhyay, “Mechanical behaviour of glass fibre reinforced composite at varying strain rates,” Mater. Res. Express., 4, 381-394 (2017).

    Google Scholar 

  22. M. M. Shokrieh and A. Karamnejad, “Investigation of strain rate effects on the dynamic response of a glass/epoxy composite plate under blast loading by using the finite-difference method,” Mech. Compos. Mater., 50, 295-310 (2014).

    Article  CAS  Google Scholar 

  23. T. K. Tran and D. J. Kim, “Investigating direct tensile behavior of high performance fiber reinforced cementitious composites at high strain rates,” Cement Concrete Res., 50, 62-73 (2013).

    Article  CAS  Google Scholar 

  24. T. K. Tran, D. J. Kim, and E. Choi, “Behavior of double-edge-notched specimens made of high performance fiber reinforced cementitious composites subject to direct tensile loading with high strain rates,” Cement and Concrete Res., 63, 54-66 (2014).

    Article  CAS  Google Scholar 

  25. Y. Wan, B. Sun, and B. Gu, “Multiscale structure modeling of damage behaviors of 3D orthogonal woven composite materials subject to quasi-static and high strain rate compressions,” Mech. Mater., 94, 1-25 (2016)

    Article  Google Scholar 

  26. H. Koerber, J. Xavier, and P. P. Camanho, “High strain rate behavior of 5-harness-satin weave fabric carbon-epoxy composite under compression and combined compression-shear loading,” Int. J. Solids Struct., 54, 172-182 (2015).

    Article  CAS  Google Scholar 

  27. K. Luan, B. Sun, and B. Gu, “Ballistic impact damages of 3-D angle-interlock woven composites based on high strain rate constitutive equation of fiber tows,” Int. J. Imp. Eng., 57, 145-158 (2013).

    Article  Google Scholar 

  28. Z. M. Huang and Y. X. Zhou. In: Zhang C, ed., Strength of Fibrous Composites. Zhejiang: Zhejiang University; 2012.

    Chapter  Google Scholar 

  29. A. Lagzdins, R. D. Maksimov, and E. Plume, “Anisotropy of elasticity of a composite with irregularly oriented anisometric filler particles,” Mech. Compos. Mater., 45, 345 (2009).

    Article  Google Scholar 

  30. J. Aboudi, S. M. Arnold, and B. A. Bednarcyk, The Generalized Method of Cells Micromechanics. Micromechanics of Composite Materials-A. Generalized Multiscale Analysis Approach. Oxford: Kidlington, 2013.

    Chapter  Google Scholar 

  31. J. Aboudi, M. J. Pindera, and S. M. Arnold, “High-fidelity generalized method of cells for inelastic periodic multiphase materials,” NASA TM-2002-211469 (2002).

  32. I. M. Daniel, “Yield and failure criteria for composite materials under static and dynamic loading,” Prog. Aerosp. Sci., 81, 18-25 (2016).

    Article  Google Scholar 

  33. K. J. Yoon and C. T. Sun, “Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite,” J. Compos. Mater., 25, 1277-1296 (1991).

    Article  CAS  Google Scholar 

  34. J. J. Ye, Y. Y. Qiu, Z. Zhai, and X. F. Chen, “Strain rate influence on nonlinear response of polymer-matrix composites,” Polym. Compos., 36, 800-810 (2015).

    Article  CAS  Google Scholar 

  35. G. L. Shen, G. K. Hu, and B. Liu, Mechanics of Composite Materials (2nd. ed), Beijing, Tsinghua University Press, 2013.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51675397 and 51805400), the National Natural Science Foundation of Shaanxi Province (Nos. 2018JZ5005 and 2017JQ5002), China Scholarship Council (No. 201706965037), and Fundamental Research Funds for the Central Universities (No. JB180414), Project No. B14042. The first author is also grateful to the Engineering Department, Lancaster University, for the support he received during of his visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Ye.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 5, pp. 885-898, September-October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J.J., Xi, J., Hong, Y. et al. A Multiscale Approach to Studying the High Strain-Rate Deformations of Glass-Fiber-Reinforced Polymer-Matrix Composites. Mech Compos Mater 55, 607–616 (2019). https://doi.org/10.1007/s11029-019-09837-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09837-6

Keywords

Navigation