Skip to main content
Log in

Design of the Elastic Modulus of Nanoparticles-Containing PVA/PVAc Films by the Response Surface Method

  • Published:
Mechanics of Composite Materials Aims and scope

By the surface response method, a regression equation is constructed, and the tensile elastic modulus of films made from polyvinyl alcohol/polyvinyl acetate (PVA/PVAc) blends filled with montmorillonite clay and microcrystalline cellulose nanoparticles is investigated. It is established that the introduction of the nanoparticles improves the mechanical properties of the blends in tension considerably: their strength and elastic modulus increase with content of the particles. Using the regression equation, the optimum composition of nanoparticlefilled PVA/PVAc blends with the highest value of elastic modulus is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. N. Ushakov, Polyvinyl Alcohol and Its Derivatives [in Russian], Izdat. Akad. Nauk, Moscow–Leningrad, 2, 781-790 (1960).

    Google Scholar 

  2. M. E. Rosenberg, Polymers on the Basis of Vinylacetate [in Russian], Khimiya, Leningrad, 103-115 (1983).

    Google Scholar 

  3. N. A. Peppas and D. Tennenhouse, “Semicrystalline poly(vinyl alcohol) films and their blends with poly(acrylic acid) and poly(ethylene glycol) for drug delivery applications,” J. Drug Del. Sci. Tech., 14, No. 4, 291-297 (2004).

    Article  Google Scholar 

  4. C. Vasile and A. K. Kulshreshtha, Handbook of Polymer Blends and Composites. Vol. 4, Rapra Technology (2003).

  5. S. Patachia, C. Vasile, and E. Mavru, “Study of the compatibility in the poly(vinyl-chloride)/poly(vinyl-alcohol) system,” Polym. Bull., 13, No. 4, April, 301-306 (1985).

  6. Y. Chun-Chen, J. M. Yang, and W. Cheng-Yeou, “Poly(vinyl alcohol)/poly(vinyl chloride) composite polymer membranes for secondary zinc electrodes,” J. Power Sources, 191, No. 2, 669-677 (2009).

    Article  Google Scholar 

  7. N. Jelinska, M. Kalnins, V. Tupureina, and A. Dzene, “Poly(vinyl alcohol)/poly(vinyl acetate) blend films,” Sci. J. Riga Techn. Univ., Mater. Sci. Appl. Chem.,21, No. 2, 55-61 (2010).

    Google Scholar 

  8. N. Jelinska and M. Kalnins, “Strength and deformation characteristics of polymer blend films obtained from water systems,” Mech. Compos. Mater., 47, No. 5, 581-588 (2011).

    Article  Google Scholar 

  9. S. Pavlidou and C. D. Papaspyrides, “A review on polymer-layered silicate nanocomposites,” Progress Polymer Sci., 33, No. 12, 1119-1198 (2008).

    Article  Google Scholar 

  10. M. Laka and S. Chernyavskaya, “Obtaining and properties of microcrystalline cellulose from hardwood pulp,” Sci. J. Riga Techn. Univer., Mater. Sci. Appl. Chem., 14, No. 2, 7-14 (2007).

    Google Scholar 

  11. S. Sinha Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progr. Polym. Sci., 28, No. 11, 1539-1641 (2003).

    Article  Google Scholar 

  12. J. Ma, J. Xu, J. Ren, Z. Yu, and Y. Mai, “A new approach to polymer/montmorillonite nanocomposites,” Polymer, 44, No. 16, 4619-4624 (2003).

    Article  Google Scholar 

  13. M. Biswas and S. S. Ray, “Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites,” Adv. Polym. Sci., 155, 167-221 (2001).

    Article  Google Scholar 

  14. J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf, and I. Jasiuk, “Experimental trends in polymer nanocomposites — a review,” Mater. Sci. Eng.: A: Review, 393, Nos. 1/2, 1-11 (2005).

    Article  Google Scholar 

  15. S. C. Tjong, “Structural and mechanical properties of polymer nanocomposites,” Mater. Sci. Eng.: R: Reports, 53, Nos. 3/4, 73-197 (2006).

    Article  Google Scholar 

  16. D. C. Montgomery, Solutions. Design and Analysis of Experiments, Wiley, New York (2012).

    Google Scholar 

  17. F. L. Hong, J. Peng, and W. B. Lui, “Optimization of the process variables for the synthesis of starch based biodegradable resin using response surface methodology,” J. Appl. Polym. Sci., 119, No. 3, 1797-1804 (2011).

    Article  Google Scholar 

  18. V. Sridhar, K. Prasad, S. Choe, and P. P. Kundu, “Optimization of physical and mechanical properties of rubber compounds by a response surface methodological approach,” J. Appl. Polym. Sci., 82, No. 4, 997-1005 (2001).

    Article  Google Scholar 

  19. R. Rikards and A. Chate, “Optimal design of sandwich and laminated composite plates based on the planning of experiments,” Struct. Optimization, 10, No. 1, 46-53 (1995).

    Article  Google Scholar 

  20. R. Rikards, A. K. Bledzki, V. Eglajs, A. Cate, and K. Kurek, “Elaboration of optimal design models for composite materials from data of experiments,” Mech. Compos. Mater., 28, No. 4, 435-445 (1992).

    Google Scholar 

  21. V. Eglajs, “Approximation of data by the multi-dimensional regression equationion,” Probl. Dynam. Strength, 39, 120-125 (1981).

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Latvian Ministry of Education and Science, Contract No. V7909.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jelinska.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 51, No. 5, pp. 945-954 , September-October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelinska, N., Kalnins, M., Kovalovs, A. et al. Design of the Elastic Modulus of Nanoparticles-Containing PVA/PVAc Films by the Response Surface Method. Mech Compos Mater 51, 669–676 (2015). https://doi.org/10.1007/s11029-015-9537-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9537-0

Keywords

Navigation