Skip to main content
Log in

Surface/Interface Effect on the Band Gap of an Antiplane Wave in a 2D Phononic Crystal with Parallel Nanoholes or Nanofibers

  • Published:
Mechanics of Composite Materials Aims and scope

The dispersion relations and band gap properties of 2D phononic crystals with periodically arranged nanoholes or nanofibers are studied based on the multiple scattering method. Elastic waves polarized along the axes of the nanoholes or nanofibers are considered. Gurtin’s surface/interface models are used to deal with surfaces of the nanoholes and interfaces between the nanofibers and the host material. Some numerical examples are given, and the results obtained are illustrated graphically. It is found that the surface/interface effect influences the dispersion relations and band gaps considerably. The band gaps may become wide or narrow depending on the surface parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. M. Sigalas and E. N. Economou, “Elastic and acoustic wave band structure,” J. of Sound and Vibration, 158, No. 2, 377-382 (1992).

    Article  Google Scholar 

  2. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett., 71, No. 13, 2022-2025 (1993).

    Article  Google Scholar 

  3. Z. Liu, X. Zhang, Y. Mao, and Y. Zhu, “Locally resonant sonic materials,” Science, 289 No. 5485, 1734-1736 (2000).

    Article  Google Scholar 

  4. Z. Hou, F. Wu, and Y. Liu, “Phononic crystals containing piezoelectric material,” Solid State Communications, 130, No. 11, 745-749 (2004).

    Article  Google Scholar 

  5. M. Lan and P. Wei, “Laminated piezoelectric phononic crystal with imperfect interfaces,” J. of Appl. Phys., 111, No. 1, 013505 (2012).

    Article  Google Scholar 

  6. X. Zhang and Z. Liu, “Negative refraction of acoustic waves in two-dimensional phononic crystals,” Appl. Phys. Lett., 85, No. 2, 341-343 (2004).

    Article  Google Scholar 

  7. M. Torres and F. R. Montero de Espinosa, “Ultrasonic band gaps and negative refraction,” Ultrasonics, 42, Nos.1-9, 787-790 (2004).

    Article  Google Scholar 

  8. S. Yang, J. H. Page, P. Liu, and M. L. Cowan, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett., 93 No. 2 (2004).

  9. A. Håkansson, J. Sánchez-Dehesa, and L. Sanchis, “Acoustic lens design by genetic algorithms,” Phys. Rev. B, 70, No. 21 (2004).

  10. C. Qiu, Z. Liu, J. Shi, and C. T. Chan, “Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals,” Appl. Phys. Lett., 86, No. 22, 224105 (2005).

    Article  Google Scholar 

  11. A.Khelif, A. Choujaa, S. Benchabane, and B. Djafari-Rouhani, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett., 84, No. 22, 4400 (2004).

    Article  Google Scholar 

  12. G. Chen, A. Narayanaswamy, and C. Dames, “Engineering nanoscale phonon and photon transport for direct energy conversion,” Superlattices and Microstructures, 35, Nos. 3-6, 161-172 (2004).

    Article  Google Scholar 

  13. H. L. Duan, J. Wang, Z. P. Huanga, and B. L. Karihaloobet, “Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress,” J. Mech. and Phys. of Solids, 53, No. 7, 1574-1596 (2005).

    Article  Google Scholar 

  14. R. E. Miller and V. B., Shenoy, “Size-dependent elastic properties of nanosized structural elements,” Nanotechnology, 11, No. 3, 139-147 (2000).

    Article  Google Scholar 

  15. M. E. Gurtin and A. Ian Murdoch, “A continuum theory of elastic material surfaces,” Archive for Rational Mechanics and Analysis, 57, No. 4 (1975).

  16. M. E. Gurtin, J. Weissmüller, and F. Larché, “A general theory of curved deformable interfaces in solids at equilibrium,” Philosophical Magazine A, 78, No. 5, 1093-1109 (1998).

    Article  Google Scholar 

  17. V. Shenoy, “Atomistic calculations of elastic properties of metallic fcc crystal surfaces,” Phys. Rev. B, 71, No. 9 (2005).

  18. Y. Benveniste and T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity,” Mech. of Mater., 33, No. 6, 309-323 (2001).

    Article  Google Scholar 

  19. L. G. Zhou and H. Huang, “Are surfaces elastically softer or stiffer?” Appl. Phys. Lett., 84, No. 11, 1940 (2004).

    Article  Google Scholar 

  20. R. C. Cammarata, K. Sieradzki, and F. Spaepen, “Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films,” J. of Appl. Phys., 87, No. 3, 1227 (2000).

    Article  Google Scholar 

  21. Z. P. Huang and J. Wang, “A theory of hyperelasticity of multi-phase media with surface/interface energy effect,” Acta Mechanica, 182, Nos. 3-4, 195-210 (2006).

    Article  Google Scholar 

  22. H. L. Duan, J. Wang, B. L. Karihaloo, and Z. P. Huang, “Nanoporous materials can be made stiffer than non-porous counterparts by surface modification,” Acta Materialia, 54, No. 11, 2983-2990 (2006).

    Article  Google Scholar 

  23. G. F. Wang, T. J. Wang, and X. Q. Feng, “Surface effects on the diffraction of plane compressional waves by a nanosized circular hole,” Appl. Phys. Lett., 89, No. 23, 231923 (2006).

    Article  Google Scholar 

  24. G. F. Wang, X. Q. Feng, and S. W. Yu, “Interface effects on the diffraction of plane compressional waves by a nanosized spherical inclusion,” J. of Appl. Phys., 102, No. 4, 043533 (2007).

    Article  Google Scholar 

  25. S. M. Hasheminejad and R. Avazmohammadi, “Size-dependent effective dynamic properties of unidirectional nanocomposites with interface energy effects,” Compos. Sci. Technol., 69, No. 15-16, 2538-2546 (2009).

    Article  Google Scholar 

  26. W. Liu, J. Chen, Y. Liu, and Su Xianyue, “Effect of interface/surface stress on the elastic wave band structure of twodimensional phononic crystals,” Phys. Lett., A, 376, No. 4, 605-609 (2012).

    Article  Google Scholar 

  27. N. Zhen, Y.-S. Wang, and C. Zhang, “Surface/interface effect on band structures of nanosized phononic crystals,” Mechanics Research Communications, 46, 81-89 (2012).

    Article  Google Scholar 

  28. B. Cai and P. J. Wei, “Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers,” Acta Mechanica, 224, No. 11, 2749-2758 (2013).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No.10972029)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Wei.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 51, No. 4, pp. 735-746 , July-August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Wei, P.J. & Kong, Z. Surface/Interface Effect on the Band Gap of an Antiplane Wave in a 2D Phononic Crystal with Parallel Nanoholes or Nanofibers. Mech Compos Mater 51, 521–530 (2015). https://doi.org/10.1007/s11029-015-9522-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9522-7

Keywords

Navigation