Skip to main content

Advertisement

Log in

Modeling of Thermoplastic Composites Used in Protective Structures

  • Published:
Mechanics of Composite Materials Aims and scope

Ballistic tests of hot-pressed panels of thickness 2.6-5.4 mm made of Dyneema® (HB2 and HB80), aramid (Twaron® No. 613 and Teksar®), and basalt (TBK-100) woven fabrics were carried out. It is shown that the energy absorption efficiency of the panels based on Dyneema® is by 30-75% higher than the other ones at the same suface density. For the panel based on Dyneema® HB80, which showed the best results in ballistic tests, a low-parametric finite-element model to describe its interaction with a high-speed spherical striker is created. This model allows one to predict both the residual speed of the striker and the size of delamination zone with sufficient accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing and Design, CRC Press, USA (2007).

    Book  Google Scholar 

  2. A. Bhatnagar (ed.), Lightweight Ballistic Composites: Military and Law-Enforcement Applications, Woodhead Publishing, England (2006).

    Google Scholar 

  3. L. A. Utracki, Rigid Ballistic Composites (Review of literature), NRC Publications Archive, Canada (2010) URL: <http: // nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl? action=rtdoc*an=16885314*lang=en> (date of ref.: 20.04.2014).

  4. S. Abrate (ed.), Impact Engineering of Composite Structures, Springer, New York (2011).

    Google Scholar 

  5. S. G. Kulkarni, X.-L. Gao, S. E. Horner, J. Q. Zheng, and N. V. David, “Ballistic helmets — their design, materials, and performance against traumatic brain injury,” J. Compos. Struct., 101, 313-331 (2013).

    Article  Google Scholar 

  6. P. J. Hazell, Ceramic Armor: Design and Defeat Mechanisms, Argos Press, Australia (2006).

    Google Scholar 

  7. S. Chocron, N. King, R. Bigger, J. D. Walker, U. Heisserer, and H. van der Werff, “Impacts and waves in Dyneema HB80 strips and laminates,” in: Proc. 27th Int. Symp. Ballistics, DEStech Publ., Inc. (2013), pp. 1075-1078.

  8. J. G. Carrillo, R. A. Gamboa, E. A. Flores-Johnson, P. I. Gonzalez-Chi, “Ballistic performance of thermoplastic composite laminates made from aramid woven fabric and polypropylene matrix,” Polymer Testing, 31, 512-519 (2012).

    Article  Google Scholar 

  9. Numerical Analysis of Impact Behavior on Aeronautical Composite Protections. Alberto Portill Bullido. URL: http: //www.onatus.com/makaleler/PublishingImages/Pages/Structural-Crash-Simulations/Numerica On%20Aero-nautical%20 Composite%20Protections.pdf (date of ref.: 10.05.2014).

  10. O. Soykasap and M. Colakoglu, “Ballistic performance of a Kevlar-29 woven fiber composite under varied temperatures,” Mech. Compos. Mater., 46, No. 1, 35-42 (2010).

    Article  Google Scholar 

  11. K. Krishnan, S. Sockalingam, S. Bansal, and S. D. Rajan, “Numerical simulation of ceramic composite armor subjected to ballistic impact,” Composites: Part B: Eng., 41, Iss. 8, 583-593 (2010).

    Article  Google Scholar 

  12. C. W. Boey, R. S. Hixson, and J. O. Sinibaldi, “Advanced layered personnel armor,” Int. J. Impact Eng., 38, 369-383 (2011).

    Article  Google Scholar 

  13. Chen Xiaogang, Zhou Yi, and G. Wells, “Numerical and experimental investigations into ballistic performance of hybrid fabric panels,” Composites: Part B: Eng., 58, 35-42 (2014).

    Article  Google Scholar 

  14. B. D. Utomo, High-Speed Impact Modeling and Testing of Dyneema Composite, PhD thesis, Delft (2011).

  15. M. Grujicic, G. Arakere, T. He, W. C. Bell, B. A. Cheeseman, C.-F. Yen, and B. Scott, “A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites,” Mater. Sci. Eng. A., 498, 231-241 (2008).

    Article  Google Scholar 

  16. A. Levi-Sasson, I. Meshi, S. Mustacchi, I. Amarilio, D. Benes, V. Favorsky, R. Eliasy, J. Aboudi, and R. Haj-Ali, “Experimental determination of linear and nonlinear mechanical properties of laminated soft composite material system,” Composites: Part B: Eng., 57, 96-104 (2014).

    Article  Google Scholar 

  17. L. Iannucci and D. Pope, “High velocity impact and armour design,” eXPRESS Polymer Let., 5, No. 3, 262-272 (2011).

    Article  Google Scholar 

  18. J. E. Callahan, “Analysis of Composite Helmet Impact by the Finite Element Method,” in: Master of Science Thesis, Blacksburg (2011).

  19. M. M. Shokrieh and M. N. Fakhar, “Experimental, analytical, and numerical studies of composite sandwich panels under low-velocity impact loadings,” Mech. Compos. Mater., 47, No. 6, 643-658 (2011).

    Article  Google Scholar 

  20. B. P. Russell, K. Karthikeyan, V. S. Deshpande, and N. A. Fleck, “The high strain rate response of ultrahigh molecularweight polyethylene: From fiber to laminate,” Int. J. Impact Eng., 60, 1-9 (2013).

    Article  Google Scholar 

  21. T. Peijs, M. J. N. Jacobs, and P. J. Lemstra, “High Performance Polyethylene Fibers,” in: A. Kelly and C. Zweben (eds.), Comprehensive Composite Materials. Vol. 1: Fiber Reinforcements and General Theory of Composites, Elsevier (2000), pp. 263-301.

  22. C. P. Koh, V. P. W. Shim, V. B. C. Tan, and B. L. Tan, “Response of a high-strength flexible laminate to dynamic tension,” Int. J. Impact Eng., 35, 559-568 (2008).

    Article  Google Scholar 

  23. M. Hudspeth, Xu Nie, and W. Chen, “Dynamic failure of Dyneema SK76 single fibers under biaxial shear/tension,” Polymer, 53, 5568-5574 (2012).

    Article  Google Scholar 

  24. F. X. Kromm, T. Lorriot, B. Coutand, R. Harry, and J. M. Quenisset, “Tensile and creep properties of ultrahigh molecular weight PE fibers,” Polymer Testing, 22, 463-470 (2003).

    Article  Google Scholar 

  25. G. Gopinath, J. Q. Zheng, and R. C. Batra, “Effect of matrix on ballistic performance of soft body armor,” Compos. Struct., 94, 2690-2696 (2012).

    Article  Google Scholar 

  26. S. B. Sapozhnikov and M. V. Zhikharev, “Ballistic damage, residual strength and repair of GFRP plates,” in: Abstr. 1st Int. Conf. Adv. Marine Eng. (ICACME 2013), Beijing (2013), p. 28.

  27. Sun Baozhong, Liu Yuankun, and Gu Bohong, “A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite,” Composites: Part B: Eng., 40, 552-560 (2009).

    Article  Google Scholar 

  28. Li Zhijiang, Sun Baozhong, and Gu Bohong, “FEM simulation of 3D angle-interlock woven composite under ballistic impact from unit cell approach,” Computat. Mater. Sci., 49, 171-183 (2010).

    Article  Google Scholar 

  29. G. Nilakantan, M. Keefe, T. A. Bogetti, R. Adkinson, and J. W. Gillespie, “On the finite element analysis of woven fabric impact using multiscale modeling techniques,” Int. J. Solids Struct., 47, 2300-2315 (2010).

    Article  Google Scholar 

  30. N. Yu. Dolganina and S. B. Sapozhnikov, “Study of the influence of type of weave for strength of the textile armor panel at the local impact,” Bulletin of the SUSU. Mechanical Engineering Industry, 13, No. 2, 95-104 (2013).

    Google Scholar 

  31. N. Yu. Dolganina, “Evaluation of ballistic limit and multilayer fabric plate deflection under indenter impact,” Bulletin of the SUSU. Mechanical Engineering Industry, 10 (186), 17-23 (2010).

    Google Scholar 

  32. URL: http://www.dyneema.com/apac/technologies/dyneema-ud-technologies/hb80.aspx (date of ref.: 20.05.2014).

  33. URL: http://www.dynamore.de/de/download/papers/2013-ls-dyna-forum/documents/review-of-shell-element-formulations-in-ls-dyna-properties-limits-advantages-disadvantages (date of ref.: 20.05.2014).

  34. URL: http://www.dynamore.de/de/download/papers/forum11/entwicklerforum-2011/erhart.pdf (date of ref.: 20.05.2014).

  35. E. S. Greenhalgh, V. M. Bloodworth, L. Iannucci, and D. Pope, “Fractographic observations on Dyneema® composites under ballistic impact,” Composites: Part A: Appl. Sci. Manufact., 44, 51-62 (2013).

    Article  Google Scholar 

  36. Huang Wen, Wang Yang, and Xia Yuanming, “Statistical dynamic tensile strength of UHMWPE-fibers,” Polymer, 45, 3729-3734 (2004).

    Article  Google Scholar 

  37. D. L. Languerand, H. Zhang, N. S. Murthy, K. T. Ramesh, and F. Sansoz, “Inelastic behavior and fracture of high modulus polymeric fiber bundles at high strain-rates,” Mater. Sci. Eng. A., 500, 216-224 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed at the South Ural State University (National Research University) with a financial support of Russian Russian Science Foundation (project No. 14-19-00327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sapozhnikov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 51, No. 4, pp. 595-606 , July-August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapozhnikov, S., Kudryavtsev, O. Modeling of Thermoplastic Composites Used in Protective Structures. Mech Compos Mater 51, 419–426 (2015). https://doi.org/10.1007/s11029-015-9513-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9513-8

Keywords

Navigation