Skip to main content
Log in

Buckling Analysis of a Plate Compliant in Transverse Shear

  • Published:
Mechanics of Composite Materials Aims and scope

A finite-element solution to the buckling of a plate compliant in transverse shear is considered. A rectangular finite element with four nodes is used. The basic kinematic variables include the angles of transverse shear strains. A comparative analysis of the load-carrying ability of composite and sandwich plates compressed along one of plate sides is performed. Two variants of boundary conditions on the plate contour are compared, namely the classical fixed contour and a fixed contour with free transverse shear deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Carrera, “Theories and finite elements for multilayered, anisotropic, composite plates and shells,” Arch. Comput. Meth. Eng., 9, No. 2, 87-140 (2002).

    Article  Google Scholar 

  2. E. Carrera, “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking,” Arch. Comput. Math. Eng., 10, No. 3, 215-296 (2003).

    Article  Google Scholar 

  3. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” Trans. ASME. J. Appl. Mech., 12, No. 2, 69-77 (1945).

    Google Scholar 

  4. R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of elastic plates,” Trans. ASME. J. Appl. Mech., 18, 31-38 (1951).

    Google Scholar 

  5. V. V. Vasil’ev, Mechanics of Composite Structures [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  6. V. A. Nesterov, “Stiffness matrix of the finite element of a plate compliant in transverse shear,” Mech. Compos. Mater., 47, No. 3, 271-284 (2011).

    Article  Google Scholar 

  7. A. S. Vol’mir, Stability of Deformable Systems [in Russian], Moscow (1967).

  8. B. I. Hwang and J. S. Lee, “Buckling of orthotropic plates under various inplane loads,” J. Struct. Eng. KSCE, 10, No. 5, 349-356 (2006).

    Article  Google Scholar 

  9. A. Chakrabarti and A. H. Sheikh, “Buckling of laminated sandwich plates subjected to partial edge compression,” Int. J. Mech. Sci., 47, 418-436 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Nesterov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 50, No. 5, pp. 771-794, September-October, 2014.

Appendices

Appendices

1. Block structure of the matrix of form P whose elements appear in Eqs. (14):

$$ \mathbf{P}=\left[{\mathbf{P}}_{\mathrm{I}}\kern0.5em {\mathbf{P}}_{\mathrm{I}\mathrm{I}}\kern0.5em {\mathbf{P}}_{\mathrm{I}\mathrm{I}\mathrm{I}}\kern0.5em {\mathbf{P}}_{\mathrm{I}\mathrm{V}}\right]. $$

Here, P I, P II, P III, and P IV are 5 ×5 submatrices with the following structure and components:

$$ \begin{array}{c}\hfill {\mathbf{P}}_{\mathrm{I}}=\left[\begin{array}{ccccc}\hfill {p}_{11}\hfill & \hfill {p}_{12}\hfill & \hfill {p}_{13}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {p}_{21}\hfill & \hfill {p}_{22}\hfill & \hfill {p}_{21}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {p}_{31}\hfill & \hfill {p}_{32}\hfill & \hfill {p}_{33}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_{44}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_{55}\hfill \end{array}\right],\kern0.5em {\mathbf{P}}_{\mathrm{I}\mathrm{I}}=\left[\begin{array}{ccccc}\hfill {p}_{16}\hfill & \hfill {p}_{17}\hfill & \hfill {p}_{18}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {p}_{26}\hfill & \hfill {p}_{27}\hfill & \hfill {p}_{28}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {p}_{36}\hfill & \hfill {p}_{37}\hfill & \hfill {p}_{38}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_{49}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_{5,10}\hfill \end{array}\right],\hfill \\ {}\hfill {\mathbf{P}}_{\mathrm{I}\mathrm{I}\mathrm{I}}=\left[\begin{array}{ccccc}\hfill {p}_{1,11}\hfill & \hfill {p}_{1,12}\hfill & \hfill {p}_{1,13}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {p}_{2,11}\hfill & \hfill {p}_{2,12}\hfill & \hfill {p}_{2,13}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {p}_{3,11}\hfill & \hfill {p}_{3,12}\hfill & \hfill {p}_{3,13}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_{4,14}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_{5,15}\hfill \end{array}\right],\kern0.5em {\mathbf{P}}_{\mathrm{I}\mathrm{V}}=\left[\begin{array}{ccccc}\hfill {p}_{1,16}\hfill & \hfill {p}_{1,17}\hfill & \hfill {p}_{1,18}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {p}_{2,16}\hfill & \hfill {p}_{2,17}\hfill & \hfill {p}_{2,18}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {p}_{3,16}\hfill & \hfill {p}_{3,17}\hfill & \hfill {p}_{3,18}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_{4,19}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_{5,20}\hfill \end{array}\right],\hfill \\ {}\hfill {p}_{11}=1-\frac{xy}{ab}+\frac{3{x}^2y}{a^2b}+\frac{3x{y}^2}{a{b}^2}-\frac{2{x}^3y}{a^3b}-\frac{2x{y}^3}{b^3a}-\frac{3{x}^2}{a^2}-\frac{3{y}^2}{b^2}+\frac{2{x}^3}{a^3}+\frac{2{y}^3}{b^3}.\hfill \\ {}\hfill \begin{array}{cc}\hfill {p}_{12}=\frac{2{x}^2y}{ab}-\frac{x^3y}{a^3b}-\frac{xy}{b}+\frac{x^3}{a^2}-\frac{2{x}^2}{a}+x,\hfill & \hfill {p}_{13}=\frac{2x{y}^2}{ab}-\frac{x{y}^3}{a{b}^2}-\frac{2{y}^2}{b}+\frac{xy}{a}-\frac{y^3}{b^2}+y,\hfill \end{array}\hfill \\ {}\hfill \begin{array}{cc}\hfill {p}_{16}=\frac{xy}{ab}+\frac{3{x}^2y}{a^2b}-\frac{3x{y}^2}{a{b}^2}+\frac{2{x}^3y}{a^3b}+\frac{2x{y}^3}{b^3a}+\frac{3{x}^2}{a^2}-\frac{2{x}^3}{a^3},\hfill & \hfill {p}_{17}=\frac{x^2y}{ab}-\frac{x^3y}{a^2b}+\frac{x^3}{a^2}-\frac{x^2}{a},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{ccc}\hfill {p}_{18}=-\frac{2x{y}^2}{ab}+\frac{x{y}^3}{a{b}^2}+\frac{xy}{a},\hfill & \hfill {p}_{1,11}=-\frac{xy}{ab}+\frac{3{x}^2y}{a^2b}+\frac{3x{y}^2}{a{b}^2}-\frac{2{x}^3y}{a^3b}-\frac{2x{y}^3}{b^3a},\hfill & \hfill {p}_{1,12}=-\frac{x^2y}{ab}+\frac{x^3y}{a^2b},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{cc}\hfill {p}_{1,13}=-\frac{x{y}^2}{ab}+\frac{x{y}^3}{a{b}^2},\hfill & \hfill {p}_{1,16}=\frac{xy}{ab}-\frac{3{x}^2y}{a^2b}-\frac{3x{y}^2}{a{b}^2}+\frac{2{x}^3y}{a^3b}+\frac{2x{y}^3}{b^3a}+\frac{3{y}^2}{b^2}-\frac{2{y}^3}{b^3},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{cc}\hfill {p}_{1,17}=-\frac{2{x}^2y}{ab}+\frac{x^3y}{a^2b}+\frac{xy}{b},\hfill & \hfill {p}_{1,18}=\frac{x{y}^2}{ab}-\frac{x{y}^3}{a{b}^2}-\frac{y^2}{b}+\frac{y^3}{b^2},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{cc}\hfill {p}_{21}=-\frac{6{x}^2y}{a^3b}+\frac{6xy}{a^2b}-\frac{y}{ab}+\frac{3{y}^2}{a{b}^2}-\frac{2{y}^3}{b^3a}-\frac{6x}{a^2}+\frac{6{x}^2}{a^3},\hfill & \hfill {p}_{22}=1+\frac{4xy}{ab}-\frac{3{x}^2y}{a^2b}\hfill \end{array}+\frac{3{x}^2}{a^2}-\frac{4x}{a}-\frac{y}{b},\hfill \\ {}\hfill \begin{array}{ccc}\hfill {p}_{23}=\frac{2{y}^2}{ab}-\frac{y^3}{a{b}^2}-\frac{y}{a},\hfill & \hfill {p}_{26}=\frac{6{x}^2y}{a^3b}-\frac{6xy}{a^2b}+\frac{y}{ab}-\frac{3{y}^2}{a{b}^2}+\frac{2{y}^3}{b^3a}+\frac{6x}{a^2}-\frac{6{x}^2}{a^3},\hfill & \hfill {p}_{27}=\frac{2xy}{ab}-\frac{3{x}^2y}{a^2b}+\frac{3{x}^2}{a^2}-\frac{2x}{a}\hfill \end{array}\hfill \\ {}\hfill \begin{array}{ccc}\hfill {p}_{28}=-\frac{2{y}^2}{ab}+\frac{y^3}{a{b}^2}+\frac{y}{a},\hfill & \hfill {p}_{2,11}=-\frac{6{x}^2y}{a^3b}+\frac{6xy}{a^2b}-\frac{y}{ab}+\frac{3{y}^2}{a{b}^2}-\frac{2{y}^3}{b^3a},\hfill & \hfill {p}_{2,12}=-\frac{2xy}{ab}+\frac{3{x}^2y}{a^2b},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{cc}\hfill {p}_{2,13}=-\frac{y^2}{ab}+\frac{y^3}{a{b}^2},\hfill & \hfill {p}_{2,16}=-\frac{6{x}^2y}{a^3b}-\frac{6xy}{a^2b}+\frac{y}{ab}-\frac{3{y}^2}{a{b}^2}+\frac{2{y}^3}{b^3a},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{ccc}\hfill {p}_{2,17}=-\frac{4xy}{ab}+\frac{3{x}^2y}{a^2b}+\frac{y}{b},\hfill & \hfill {p}_{2,18}=\frac{y^2}{ab}-\frac{y^3}{a{b}^2},\hfill & \hfill {p}_{31}=-\frac{6x{y}^2}{b^3a}-\frac{x}{ab}+\frac{3{x}^2}{a^2b}-\frac{2{x}^3}{a^3b}-\frac{6y}{b^2}+\frac{6{y}^2}{b^3}+\frac{6xy}{a{b}^2},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{ccc}\hfill {p}_{32}=\frac{2{x}^2}{ab}-\frac{x^3}{a^2b}-\frac{x}{b},\hfill & \hfill {p}_{33}=1+\frac{4xy}{ab}-\frac{3x{y}^2}{a{b}^2}+\frac{3{y}^2}{b^2}-\frac{x}{a}-\frac{4y}{b},\hfill & \hfill {p}_{36}=\frac{6x{y}^2}{b^3a}+\frac{x}{ab}-\frac{3{x}^2}{a^2b}+\frac{2{x}^3}{a^3b}-\frac{6xy}{a{b}^2},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{cccc}\hfill {p}_{37}=\frac{x^2}{ab}-\frac{x^3}{a^2b},\hfill & \hfill {p}_{38}=\frac{4xy}{ab}+\frac{3x{y}^2}{a{b}^2}+\frac{x}{a},\hfill & \hfill {p}_{3,11}=-\frac{6x{y}^2}{b^3a}-\frac{x}{ab}+\frac{3{x}^2}{a^2b}-\frac{2{x}^3}{a^3b}+\frac{6xy}{a{b}^2},\hfill & \hfill {p}_{3,12}=-\frac{x^2}{ab}+\frac{x^3}{a^2b},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{ccc}\hfill {p}_{3,13}=-\frac{2xy}{ab}+\frac{3x{y}^2}{a{b}^2},\hfill & \hfill {p}_{3,16}=\frac{6x{y}^2}{b^2a}+\frac{x}{ab}-\frac{3{x}^2}{a^2b}+\frac{2{x}^3}{a^3b}+\frac{6y}{b^2}-\frac{6{y}^2}{b^3}-\frac{6xy}{a{b}^2},\hfill & \hfill {p}_{3,17}=-\frac{2{x}^2}{ab}+\frac{x^3}{a^2b}+\frac{x}{b},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{cccc}\hfill {p}_{3,18}=\frac{2xy}{ab}-\frac{3x{y}^2}{a{b}^2}+\frac{3{y}^2}{b^2}-\frac{2y}{b},\hfill & \hfill {p}_{44}=1+\frac{xy}{ab}-\frac{x}{a}-\frac{y}{b},\hfill & \hfill {p}_{49}=-\frac{xy}{ab}+\frac{x}{a},\hfill & \hfill {p}_{4,14}=\frac{xy}{ab},\hfill \end{array}\hfill \\ {}\hfill \begin{array}{ccccc}\hfill {p}_{4,19}=-\frac{xy}{ab}+\frac{y}{b},\hfill & \hfill {p}_{55}=1+\frac{xy}{ab}-\frac{x}{a}-\frac{y}{b},\hfill & \hfill {p}_{5,10}=-\frac{xy}{ab}+\frac{x}{a},\hfill & \hfill {p}_{5,15}=\frac{xy}{ab},\hfill & \hfill {p}_{5,20}=-\frac{xy}{ab}+\frac{y}{b}.\hfill \end{array}\hfill \end{array} $$

2. Components of the matrix of geometrical rigidity of the element R e :

$$ \begin{array}{c}\hfill {r}_{11}=\frac{46a}{105b},\kern0.5em {r}_{12}=\frac{b}{30},\kern0.5em {r}_{13}=\frac{11{b}^2}{210a},\kern0.5em {r}_{16}=-\frac{46b}{105a},\kern0.5em {r}_{17}=\frac{b}{30},\kern0.5em {r}_{18}=\frac{11{b}^2}{210a},\kern0.5em {r}_{1,11}=-\frac{17b}{105a},\hfill \\ {}\hfill {r}_{1,12}=\frac{b}{60},\kern0.5em {r}_{1,13}=\frac{13{b}^2}{420a},\kern0.5em {r}_{1,16}=\frac{17b}{105a},\kern0.5em {r}_{1,17}=\frac{b}{60},\kern0.5em {r}_{1,18}=-\frac{13{b}^2}{420a},\kern0.5em {r}_{22}=\frac{2 ab}{45},\kern0.5em {r}_{26}=-\frac{b}{30},\kern0.5em {r}_{27}=-\frac{ab}{90},\kern0.5em {r}_{2,11}=-\frac{b}{60},\hfill \\ {}\hfill {r}_{2,12}=-\frac{ab}{180},\kern0.5em {r}_{2,16}=\frac{b}{60},\kern0.5em {r}_{2,17}=\frac{ab}{45},\kern0.5em {r}_{33}=\frac{b^3}{105a},\kern0.5em {r}_{36}=-\frac{11{b}^2}{210a},\kern0.5em {r}_{38}=-\frac{b^3}{105a},\kern0.5em {r}_{3,11}=-\frac{13{b}^2}{420a},\kern0.5em {r}_{3,13}=\frac{b^3}{140a},\hfill \\ {}\hfill {r}_{3,16}=\frac{13{b}^2}{420a},\kern0.5em {r}_{3,18}=\frac{b^3}{140a},\kern0.5em {r}_{66}=\frac{46b}{405a},\kern0.5em {r}_{67}=-\frac{b}{30},\kern0.5em {r}_{68}=\frac{11{b}^2}{210a},\kern0.5em {r}_{6,11}=\frac{17b}{105a},\kern0.5em {r}_{6,12}=-\frac{b}{60},\kern0.5em {r}_{6,13}=-\frac{13{b}^2}{420a},\hfill \\ {}\hfill {r}_{6,16}=-\frac{17b}{105a},\kern0.5em {r}_{6,17}=-\frac{b}{60},\kern0.5em {r}_{6,18}=\frac{13{b}^2}{420a},\kern0.5em {r}_{77}=\frac{2 ab}{45},\kern0.5em {r}_{7,11}=-\frac{b}{60},\kern0.5em {r}_{7,12}=\frac{ab}{45},\kern0.5em {r}_{7,16}=\frac{b}{60},\kern0.5em {r}_{7,17}=-\frac{ab}{180},\hfill \\ {}\hfill {r}_{88}=\frac{b^3}{105a},\kern0.5em {r}_{8,11}=\frac{13{b}^2}{420a},\kern0.5em {r}_{8,13}=-\frac{b^3}{140a},\kern0.5em {r}_{8,16}=-\frac{13{b}^2}{420a},\kern0.5em {r}_{8,18}=\frac{b^3}{140a},\kern0.5em {r}_{11,11}=\frac{46b}{105a},\kern0.5em {r}_{11,12}=-\frac{b}{30},\hfill \\ {}\hfill {r}_{11,13}=-\frac{11{b}^2}{210a},\kern0.5em {r}_{11,16}=-\frac{46b}{105a},\kern0.5em {r}_{11,17}=-\frac{b}{30},\kern0.5em {r}_{11,18}=\frac{11{b}^2}{201a},\kern0.5em {r}_{12,12}=\frac{2 ab}{45},\kern0.5em {r}_{12,16}=\frac{b}{30},\kern0.5em {r}_{12,17}=-\frac{ab}{90},\hfill \\ {}\hfill {r}_{13,13}=\frac{b^3}{105a},\kern0.5em {r}_{13,16}=\frac{11{b}^2}{201a},\kern0.5em {r}_{13,18}=-\frac{b^3}{105a},\kern0.5em {r}_{16,16}=\frac{46b}{105a},\kern0.5em {r}_{16,17}=\frac{b}{30},\kern0.5em {r}_{16,18}=-\frac{11{b}^2}{210a},\kern0.5em {r}_{17,17}=\frac{2 ab}{45},\kern0.5em {r}_{18,18}=\frac{b^3}{105a}.\hfill \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, V. Buckling Analysis of a Plate Compliant in Transverse Shear. Mech Compos Mater 50, 553–568 (2014). https://doi.org/10.1007/s11029-014-9444-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-014-9444-9

Keywords

Navigation