Skip to main content
Log in

Stiffness matrix of the finite element of a plate compliant in transverse shear

  • Published:
Mechanics of Composite Materials Aims and scope

A four-node rectangular finite element is elaborated for a plate calculated with account of transverse shear strains. On variational realization of the finite-element method, the stiffness matrix and the vector of equivalent nodal forces are obtained for the case of a surface load. The basic nodal kinematic parameters adopted also include the angles of transverse shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” Trans. ASME, J. Appl. Mech., 12, No. 2, 69–77 (1945).

    Google Scholar 

  2. R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of elastic plates,” Trans. ASME, J. Appl. Mech., 18, 31–38 (1951).

    Google Scholar 

  3. V. V. Vasil’ev, Mechanics of Composite Structures [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  4. D. Zenkert, An Introduction to Sandwich Construction, Chameleon Press, London (1995).

    Google Scholar 

  5. J. R. Vinson, The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic, Lancaster (1999).

    Google Scholar 

  6. L. P. Kollar and G. S. Springer, Mechanics of Composite Structures, Cambridge University Press (2003).

  7. J. M. Whitney, Structural Analysis of Laminated Anisotropic Plates, Technomic, Lancaster, Pennsylvania (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Nesterov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 47, No. 3, pp. 399–418, May-June, 2011.

Appendices

Appendices

  1. 1.

    Submatrices of the matrix S (35):

$$ \begin{array}{*{20}{c}} {{S_{\text{I}}} = \left[ {\begin{array}{*{20}{c}} 1 & x & y & {{x^2}} & {xy} & {{y^2}} & {{x^3}} \\ 0 & 1 & 0 & {2x} & y & 0 & {3{x^2}} \\ 0 & 0 & 1 & 0 & x & {2y} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right]} & {{S_{\text{II}}} = \left[ {\begin{array}{*{20}{c}} {{x^2}y} & {x{y^2}} & {{y^3}} & {{x^3}y} & {x{y^3}} & 0 & 0 \\ {2xy} & {{y^2}} & 0 & {3{x^2}y} & {{y^3}} & 0 & 0 \\ {{x^2}} & {2xy} & {3{y^2}} & {{x^3}} & {3x{y^2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & x \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {{S_{\text{III}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ y & {xy} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & x & y & {xy} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} & {{S_{\text{IV}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ x & y & {xy} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x & y & {0xy} \\ \end{array} .} \right]} \\ \end{array} $$
  1. 2.

    Submatrices of the matrix T (40):

\( \begin{array}{*{20}{c}} {{T_{{\text{I - I}}}} = \left[ {\begin{array}{*{20}{c}} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} & {{T_{{\text{I - II}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} & {{T_{{\text{I - III}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} \\ \end{array} \)

$$ \begin{array}{*{20}{c}} {{T_{{\text{I - IV}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{array} } \right],} & {{T_{{\text{II - I}}}} = \left[ {\begin{array}{*{20}{c}} 1 & a & 0 & {{a^2}} & 0 & 0 & 0 \\ 0 & 1 & 0 & {2a} & 0 & 0 & {3{a^2}} \\ 0 & 0 & 1 & 0 & a & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} & {{T_{{\text{II - II}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {{a^2}} & 0 & 0 & {{a^3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & a \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} \\ \end{array} $$

\( \begin{array}{*{20}{c}} {{T_{{\text{II - III}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & a & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} & {{T_{{\text{II - IV}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & a & 0 & 0 \\ \end{array} } \right],} & {{T_{{\text{III - III}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ b & {ab} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & a & b & {ab} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} \\ \end{array} \)

$$ \begin{array}{*{20}{c}} {{T_{{\text{III - I}}}} = \left[ {\begin{array}{*{20}{c}} 1 & a & b & {{a^2}} & {ab} & {{b^2}} & {{a^3}} \\ 0 & 1 & 0 & {2a} & b & 0 & {3{a^2}} \\ 0 & 0 & 1 & 0 & a & {2b} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} & {{T_{{\text{III - II}}}} = \left[ {\begin{array}{*{20}{c}} {{a^2}b} & {a{b^2}} & {{b^3}} & {{a^3}b} & {a{b^3}} & 0 & 0 \\ {2ab} & {{b^2}} & 0 & {3{a^2}b} & {{b^3}} & 0 & 0 \\ {{a^2}} & {2ab} & {3{b^2}} & {{a^3}} & {3a{b^2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & a \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {{T_{{\text{III - IV}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ a & b & {ab} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & a & b & {ab} \\ \end{array} } \right],} & {{T_{{\text{IV - I}}}} = \left[ {\begin{array}{*{20}{c}} 1 & 0 & b & 0 & 0 & {{b^2}} & 0 \\ 0 & 1 & 0 & 0 & b & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & {2b} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {{T_{{\text{IV - III}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ b & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & b & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],} & {{T_{{\text{IV - IV}}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & b & 0 \\ \end{array} } \right].} \\ \end{array} $$
  1. 3.

    Structure of submatrices and components of the matrix P (43):

$$ \begin{array}{*{20}{c}} {{P_{\text{I}}} = \left[ {\begin{array}{*{20}{c}} {{p_{11}}} & {{p_{12}}} & {{p_{13}}} & 0 & 0 & 0 & 0 \\ {{p_{21}}} & {{p_{22}}} & {{p_{23}}} & 0 & 0 & 0 & 0 \\ {{p_{31}}} & {{p_{32}}} & {{p_{33}}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {{p_{44}}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {{p_{55}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {{p_{66}}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {{p_{77}}} \\ \end{array} } \right],} & {{P_{\text{II}}} = \left[ {\begin{array}{*{20}{c}} {{p_{18}}} & {{p_{19}}} & {{p_{1,10}}} & 0 & 0 & 0 & 0 \\ {{p_{28}}} & {{p_{29}}} & {{p_{2,10}}} & 0 & 0 & 0 & 0 \\ {{p_{38}}} & {{p_{39}}} & {{p_{3,10}}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {{p_{4,11}}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {{p_{5,12}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {{p_{6,13}}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {{p_{7,14}}} \\ \end{array} } \right],} \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {{P_{\text{III}}} = \left[ {\begin{array}{*{20}{c}} {{p_{1,15}}} & {{p_{1,16}}} & {{p_{1,17}}} & 0 & 0 & 0 & 0 \\ {{p_{2,15}}} & {{p_{2,16}}} & {{p_{2,17}}} & 0 & 0 & 0 & 0 \\ {{p_{3,15}}} & {{p_{3,16}}} & {{p_{3,17}}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {{p_{4,18}}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {{p_{5,19}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {{p_{6,20}}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {{p_{7,21}}} \\ \end{array} } \right],} & {{P_{\text{I}}} = \left[ {\begin{array}{*{20}{c}} {{p_{1,22}}} & {{p_{1,23}}} & {{p_{1,24}}} & 0 & 0 & 0 & 0 \\ {{p_{2,22}}} & {{p_{2,23}}} & {{p_{2,24}}} & 0 & 0 & 0 & 0 \\ {{p_{3,22}}} & {{p_{3,23}}} & {{p_{3,24}}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {{p_{4,25}}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {{p_{5,26}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {{p_{6,27}}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {{p_{7,28}}} \\ \end{array} } \right],} \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {{p_{11}} = 1 - \frac{{xy}}{{ab}} + \frac{{3{x^2}y}}{{{a^2}b}} + \frac{{3x{y^2}}}{{a{b^2}}} + \frac{{2{x^3}y}}{{{a^3}b}} - \frac{{2x{y^3}}}{{{b^3}a}} - \frac{{3{x^2}}}{{{a^2}}} - \frac{{3{y^2}}}{{{b^2}}} + \frac{{2{x^3}}}{{{a^3}}} + \frac{{2{y^3}}}{{{b^3}}},} \\ {\begin{array}{*{20}{c}} {{p_{12}} = \frac{{2{x^2}y}}{{ab}} - \frac{{{x^3}y}}{{{a^2}b}} - \frac{{xy}}{b} + \frac{{{x^3}}}{{{a^2}}} - \frac{{2{x^2}}}{a} + x,} & {{p_{13}} = \frac{{2x{y^2}}}{{ab}} - \frac{{x{y^3}}}{{a{b^2}}} - \frac{{2{y^2}}}{b} + \frac{{xy}}{a} - \frac{{{y^3}}}{{b2}} + y,} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{p_{18}} = \frac{{xy}}{{ab}} + \frac{{3{x^2}y}}{{{a^2}b}} - \frac{{3x{y^2}}}{{a{b^2}}} + \frac{{2{x^3}y}}{{{a^3}b}} + \frac{{2x{y^3}}}{{{b^3}a}} + \frac{{3{x^2}}}{{{a^2}}} - \frac{{2{x^3}}}{{{a^3}}},} & {{p_{19}} = \frac{{{x^2}y}}{{ab}} - \frac{{{x^3}y}}{{{a^2}b}} + \frac{{{x^3}}}{{{a^2}}} - \frac{{{x^2}}}{a}{p_{1,10}} = \frac{{2x{y^2}}}{{ab}} + \frac{{x{y^3}}}{{a{b^2}}} + \frac{{xy}}{a},} \\ \end{array} } \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{p_{1,15}} = - \frac{{xy}}{{ab}} + \frac{{3{x^2}y}}{{{a^2}b}} + \frac{{3x{y^2}}}{{a{b^2}}} - \frac{{2{x^3}y}}{{{a^3}b}} - \frac{{2x{y^3}}}{{{b^3}a}},} & {{p_{1,16}} = \frac{{ - {x^2}y}}{{ab}} + \frac{{{x^3}y}}{{{a^2}b}},\quad {p_{1,17}} = - \frac{{x{y^2}}}{{ab}} + \frac{{x{y^3}}}{{a{b^2}}},} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{p_{1,22}} = \frac{{xy}}{{ab}} - \frac{{3{x^2}y}}{{{a^2}b}} - \frac{{3x{y^2}}}{{a{b^2}}} + \frac{{2{x^3}y}}{{{a^3}b}} + \frac{{2x{y^3}}}{{{b^3}a}} + \frac{{3{y^2}}}{{{b^2}}} - \frac{{2{y^3}}}{{{b^3}}},} & {{p_{1,23}} = - \frac{{2{x^2}y}}{{ab}} + \frac{{{x^3}y}}{{{a^2}b}} + \frac{{xy}}{b}\;{p_{1,24}} = \frac{{x{y^2}}}{{ab}} - \frac{{x{y^3}}}{{a{b^2}}} - \frac{{{y^2}}}{b} + \frac{{{y^3}}}{{{b^2}}},} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{p_{21}} = - \frac{{6{x^2}y}}{{{a^3}b}} + \frac{{6xy}}{{{a^2}b}} - \frac{y}{{ab}} + \frac{{3{y^2}}}{{a{b^2}}} - \frac{{2{y^3}}}{{{b^3}a}} - \frac{{6x}}{{{a^2}}} + \frac{{6{x^2}}}{{{a^3}}},} & {{p_{22}} = 1 + \frac{{4xy}}{{{a^2}b}} - \frac{{3{x^2}y}}{{{a^2}b}} + \frac{{3{x^2}}}{{{a^2}}} - \frac{{4x}}{a} - \frac{y}{b},} & {{p_{23}} = } \\ \end{array} \frac{{2{y^2}}}{{ab}} - \frac{{{y^3}}}{{a{b^2}}} - \frac{y}{a},} \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{p_{28}} = \frac{{6{x^2}y}}{{{a^3}b}} - \frac{{6xy}}{{{a^2}b}} + \frac{y}{{ab}} - \frac{{3{y^2}}}{{a{b^2}}} + \frac{{2{y^3}}}{{a{b^2}}} + \frac{{6x}}{{{a^2}}} - \frac{{6{x^2}}}{{{a^3}}},} & {{p_{29}} = \frac{{2xy}}{{ab}} - \frac{{3{x^2}y}}{{{a^2}b}} + \frac{{3{x^2}}}{{{a^2}}} - \frac{{2x}}{a},} & {{p_{2,10}} = - \frac{{2{y^2}}}{{ab}} + \frac{{{y^3}}}{{a{b^2}}} + \frac{y}{a},} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{p_{2,15}} = - \frac{{6{x^2}y}}{{{a^3}b}} + \frac{{6xy}}{{{a^2}b}} - \frac{y}{{ab}} + \frac{{3{y^2}}}{{a{b^2}}} - \frac{{2{y^3}}}{{{b^3}a}},} & {{p_{2,16}} = - \frac{{2xy}}{{ab}} + \frac{{3{x^2}y}}{{{a^2}b}},} & {{p_{2,17}} = - \frac{{{y^2}}}{{ab}} + \frac{{{y^3}}}{{a{b^2}}}} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{p_{2,22}} = - \frac{{6{x^2}y}}{{{a^3}b}} - \frac{{6xy}}{{{a^2}b}} + \frac{y}{{ab}} - \frac{{3{y^2}}}{{a{b^2}}} + \frac{{2{y^3}}}{{{b^3}a}},} & {{p_{2,23}} = - \frac{{4xy}}{{ab}} + \frac{{3{x^2}y}}{{{a^2}b}} + \frac{y}{b}\quad {p_{2,24}} = \frac{{{y^2}}}{{ab}} - \frac{{{y^3}}}{{a{b^2},}}} \\ \end{array} } \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{p_{31}} = - \frac{{6x{y^2}}}{{{b^3}a}} - \frac{x}{{ab}} + \frac{{3{x^2}}}{{{a^2}b}} - \frac{{2{x^3}}}{{{a^3}b}} - \frac{{6y}}{{b2}} + \frac{{6{y^2}}}{{{b^3}}} + \frac{{6xy}}{{a{b^2}}},} & {{p_{32}} = \frac{{2{x^2}}}{{ab}} - \frac{{{x^3}}}{{{a^2}b}} - \frac{x}{b},} & {{p_{33}} = 1 + \frac{{4xy}}{{ab}} - \frac{{3x{y^2}}}{{a{b^2}}} + \frac{{3{y^2}}}{{{b^2}}} - \frac{x}{a} - \frac{{4y}}{b},} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{p_{38}} = \frac{{6x{y^2}}}{{{b^3}a}} + \frac{x}{{ab}} - \frac{{3{x^2}}}{{{a^2}b}} + \frac{{2{x^3}}}{{{a^3}b}} - \frac{{6xy}}{{a{b^2}}},} & {{p_{39}} = \frac{{{x^2}}}{{ab}} - \frac{{{x^3}}}{{{a^2}b}},} & {{p_{3,10}} = - \frac{{4xy}}{{ab}} + \frac{{3x{y^2}}}{{a{b^2}}} + \frac{x}{a}} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{p_{3,15}} = - \frac{{6x{y^2}}}{{{b^3}a}} - \frac{x}{{ab}} + \frac{{3{x^2}}}{{{a^2}b}} - \frac{{2{x^3}}}{{{a^3}b}} + \frac{{6xy}}{{a{b^2}}},} & {{p_{3,16}} = - \frac{{{x^2}}}{{ab}} + \frac{{{x^3}}}{{{a^2}b}},} & {{p_{3,17}} = - \frac{{2xy}}{{ab}} + \frac{{3x{y^2}}}{{a{b^2}}},} \\ \end{array} } \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{p_{3,22}} = \frac{{6x{y^2}}}{{{b^3}a}} + \frac{x}{{ab}} - \frac{{3{x^2}}}{{{a^2}b}} + \frac{{6y}}{{{b^2}}} - \frac{{6{y^2}}}{{{b^3}}} - \frac{{6xy}}{{a{b^2}}},} & {{p_{3,23}} = - \frac{{2{x^2}}}{{ab}}} \\ \end{array} + \frac{{{x^3}}}{{{a^2}b}} + \frac{x}{b}\;{p_{3,24}} = \frac{{2xy}}{{ab}} - \frac{{3x{y^2}}}{{a{b^2}}} + \frac{{3{y^2}}}{{{b^2}}} - \frac{{2y}}{b},} \\ {\begin{array}{*{20}{c}} {{p_{44}} = 1 + \frac{{xy}}{{ab}} - \frac{x}{a} - \frac{y}{b},} & {{p_{4,11}} = - \frac{{xy}}{{ab}} + \frac{x}{a},} & {{p_{4,18}} = \frac{{xy}}{{ab}},} & {{p_{4,25}} = - \frac{{xy}}{{ab}} + \frac{y}{b},} & {{p_{55}} = 1 + \frac{{xy}}{{ab}} - \frac{x}{a} - \frac{y}{b},} & {} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{p_{5,12}} = - \frac{{xy}}{{ab}} + \frac{x}{a},} & {{p_{5,19}} = \frac{{xy}}{{ab}},} & {{p_{5,26}} = - \frac{{xy}}{{ab}} + \frac{y}{b},} & {{p_{66}} = 1 + \frac{{xy}}{{ab}} - \frac{x}{a} - \frac{y}{b},} & {{p_{6,13}} = - \frac{{xy}}{{ab}} + \frac{x}{a},} & {{p_{6,20}} = \frac{{xy}}{{ab}},} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{p_{6,27}} = - \frac{{xy}}{{ab}} + \frac{y}{b},} & {{p_{77}} = 1 + \frac{{xy}}{{ab}} - \frac{x}{a} - \frac{y}{b},} & {{p_{7,14}} = - \frac{{xy}}{{ab}} + \frac{x}{a},} & {{p_{7,21}} = \frac{{xy}}{{ab}},} & {{p_{7,28}} = - \frac{{xy}}{{ab}} + \frac{y}{b}} \\ \end{array} } \\ \end{array} $$
  1. 4.

    Expressions for components of the main diagonal of the stiffness matrix K e of the finite element of the plate:

$$ \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{k_{11}} = \frac{2}{5} \cdot \frac{{14{D_{33}}{a^2}{b^2} + 5{D_{12}}{b^2}{a^2} + 10{D_{11}}{b^4} + 10{D_{22}}{a^4}}}{{{a^3}{b^3}}},} & {{k_{2,2}} = \frac{4}{{15}} \cdot \frac{{5{D_{11}}{b^2} + 2{D_{33}}{a^2}}}{{ab}},} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{k_{3,3}} = \frac{4}{{15}} \cdot \frac{{2{D_{33}}{b^2} + 5{D_{22}}{a^2}}}{{ba}},} & {{k_{4,4}} = \frac{1}{9} \cdot \frac{{3{D_{11}}{b^2} + {K_x}{a^2}{b^2} + 3{D_{33}}{a^2}}}{{ab}},} & {{k_{5,5}} = \frac{1}{9} \cdot \frac{{3{D_{22}}{a^2} + {K_y}{a^2}{b^2} + 3{D_{33}}{b^2}}}{{ab}}} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{k_{6,6}} = \frac{1}{3} \cdot \frac{{{B_{33}}{a^2} + {B_{11}}{b^2}}}{{ab}},} & {{k_{7,7}} = \frac{1}{3} \cdot \frac{{{B_{33}}{b^2} + {B_{22}}{a^2}}}{{ab}},} & {{k_{8,8}} = } \\ \end{array} \frac{2}{5} \cdot \frac{{14{D_{33}}{a^2}{b^2} + 5{D_{12}}{b^2}{a^2} + 10{D_{11}}{b^4} + 10{D_{22}}{a^4}}}{{{a^3}{b^3}}},} \\ {\begin{array}{*{20}{c}} {{k_{9,9}} = \frac{4}{{15}} \cdot \frac{{5{D_{11}}{b^2} + 2{D_{33}}{a^2}}}{{ab}},} & {{k_{10,10}} = \frac{4}{{15}} \cdot \frac{{2{D_{33}}{b^2} + 5{D_{22}}{a^2}}}{{ba}},} & {{k_{11,11}} = \frac{1}{9} \cdot \frac{{3{D_{11}}{b^2} + {K_x}{a^2}{b^2} + 3{D_{33}}{a^2}}}{{ab}},} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{k_{12,12}} = \frac{1}{9} \cdot \frac{{3{D_{22}}{a^2} + {K_y}{a^2}{b^2} + 3{D_{33}}{a^2}}}{{ab}},} & {{k_{13,13}} = \frac{1}{3} \cdot \frac{{{B_{33}}{a^2} + {B_{11}}{b^2}}}{{ab}},} & {{k_{14,14}} = \frac{1}{3} \cdot \frac{{{B_{33}}{b^2} + {B_{22}}{a^2}}}{{ab}}} \\ \end{array}, } \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{k_{15,15}} = \frac{2}{5} \cdot \frac{{14{D_{33}}{a^2}{b^2} + 5{D_{12}}{b^2}{a^2} + 10{D_{11}}{b^4} + 10{D_{22}}{a^4}}}{{{a^3}{b^3}}},} & {{k_{16,16}} = \frac{4}{{15}} \cdot \frac{{5{D_{11}}{b^2} + 2{D_{33}}{a^2}}}{{ab}},} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{k_{17,17}} = \frac{4}{{15}} \cdot \frac{{2{D_{33}}{b^2} + 5{D_{22}}{a^2}}}{{ba}},} & {{k_{18,18}} = \frac{1}{9} \cdot \frac{{3{D_{11}}{b^2} + {K_x}{a^2}{b^2} + 3{D_{33}}{a^2}}}{{ab}},} & {{k_{19,19}} = \frac{1}{9} \cdot \frac{{3{D_{22}}{a^2} + {K_y}{a^2}{b^2} + 3{D_{33}}{b^2}}}{{ab}}} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{k_{20,20}} = \frac{1}{3} \cdot \frac{{{B_{33}}{a^2} + {B_{11}}{b^2}}}{{ab}},} & {{k_{21,21}} = \frac{1}{3} \cdot \frac{{{B_{33}}{b^2} + {B_{22}}{a^2}}}{{ab}},} & {{k_{22,22}} = \frac{2}{5} \cdot \frac{{14{D_{33}}{a^2}{b^2} + 5{D_{12}}{b^2}{a^2} + 10{D_{11}}{b^4} + 10{D_{22}}{a^4}}}{{{a^3}{b^3}}}} \\ \end{array}, } \\ {\begin{array}{*{20}{c}} {{k_{23,23}} = \frac{4}{{15}} \cdot \frac{{5{D_{11}}{b^2} + 2{D_{33}}{a^2}}}{{ab}},} & {k24,24 = \frac{4}{{15}} \cdot \frac{{2{D_{33}}{b^2} + 5{D_{22}}{a^2}}}{{ba}},} & {{k_{25,25}} = \frac{1}{9} \cdot \frac{{3{D_{11}}{b^2} + {K_x}{a^2}{b^2} + 3{D_{33}}{a^2}}}{{ab}},} \\ \end{array} } \\ {\begin{array}{*{20}{c}} {{k_{26,26}} = \frac{1}{9} \cdot \frac{{3{D_{22}}{a^2} + {K_y}{a^2}{b^2} + 3{D_{33}}{b^2}}}{{ab}},} & {{k_{27,27}} = \frac{1}{3} \cdot \frac{{{B_{33}}{b^2} + {B_{11}}{a^2}}}{{ab}},} & {{k_{28,28}} = \frac{1}{3} \cdot \frac{{{B_{33}}{b^2} + {B_{22}}{a^2}}}{{ab}}} \\ \end{array} } \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterov, V. Stiffness matrix of the finite element of a plate compliant in transverse shear. Mech Compos Mater 47, 271–284 (2011). https://doi.org/10.1007/s11029-011-9207-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-011-9207-9

Keywords

Navigation