Skip to main content
Log in

Stress distribution in an infinite elastic body with a covered periodically curved fiber

  • Published:
Mechanics of Composite Materials Aims and scope

Within the frame work of a piecewise homogeneous body model, with the use of the three-dimensional geometrically nonlinear exact equations of elasticity theory, a method is developed for determining the stress distribution in unidirectional fibrous composites with periodically curved fibers. The distribution of the normal and shear stresses acting on interfaces for the case where there exists a bond covering cylinder of constant thickness between the fiber and matrix is considered. The concentration of fibers in the composite is assumed to be low, and the interaction between them is neglected. Numerous numerical results related to the stress distribution in the body considered are obtained, and the influence of geometrical nonlinearity on this distribution is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Akbarov and A. N. Guz, Mechanics of Curved Composites, Kluwer Academic Publishers (2000).

  2. S. D. Akbarov and A. N. Guz’, “Continuum approaches in the mechanics of curved composites and related problems for members of constructions,” Int. Appl. Mech, 38, No.11, 3-31 (2002).

    Article  Google Scholar 

  3. S. D. Akbarov and A. N. Guz, “Mechanics of curved composites and some related problems for structural members,” Mech. Adv. Mater. Struct., 11, 445-515 (2004).

    Article  Google Scholar 

  4. V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayer Structures [in Russian], Mashinostroenie, Moscow (1980).

  5. S. D. Akbarov, T. Sisman, and N. Yahnio?lu, “On the fracture of unidirectional composites in compression,” Int. J. Eng. Sci, 35, Nos. 12/13, 1115-1136 (1997).

    Google Scholar 

  6. S. D. Akbarov, A. Cilli, and A. N. Guz, “The theoretical strength limit in compression of viscoelastic layered composite materials,” Composites, Pt. B: Engineering, 30, 465-472 (1999).

    Article  Google Scholar 

  7. S. D. Akbarov, N. Yahnioglu, and Z. Kutug, “On the three dimensional stability loss problem of a viscoelastic composite plate,” Int. J. Eng. Sci., 39, 1443-1457 (2001).

    Article  Google Scholar 

  8. S. D. Akbarov and A. N. Guz’, “Mechanics of curved composites (piecewise homogeneous body model),” Int. Appl. Mech., 38, No. 12, 1415-1439 (2002).

    Article  Google Scholar 

  9. S. D. Akbarov and A. N. Guz’, “Stress state of a fiber composite with curved structures with a low fiber concentration,” Sov. Appl. Mech., 21, No. 6, 560-565 (1985).

    Article  Google Scholar 

  10. S. D. Akbarov and A. N. Guz’, “Method of solving problems in the mechanics of fiber composites with curved structures,” Sov. Appl. Mech., 20, No. 9, 777-790 (1985).

    Article  Google Scholar 

  11. S. D. Akbarov, “On the three-dimensional stability loss problems of elements of structures of viscoelastic composite materials,” Mech. Compos. Mater., 34, No. 6, 537-544 (1998).

    Article  Google Scholar 

  12. S. D. Akbarov and R. Kosker, “Fiber buckling in a viscoelastic matrix,” Mech. Com pos. Mater., 37, No. 4, 299-306 (2001).

    Article  Google Scholar 

  13. S. D. Akbarov, R. Kosker, and K. Simsek, “Stress distribution in an in finite elastic body with a locally curved fiber in a geometrically nonlinear statement,” Mech. Compos. Mater., 41, No. 4, 291-302 (2005).

    Article  Google Scholar 

  14. S. D. Akbarov and R. Kosker, “On a stresses analysis in the infinite elastic body with two neighbouring curved fibers,” Composites, Pt. B, 34, 143-150 (2003).

    Google Scholar 

  15. S. D. Akbarov and R. Kosker, “Influence of the interaction of two neighbouring curved fibers,” Composites. Part B, 34, No. 2, 143-150 (2003).

    Article  Google Scholar 

  16. S. D. Akbarov and R. Kosker, “Stress distribution caused by anti-phase periodical curving of two neighbouring fibers in a composite materials,” Eur. J. Mech., A/Sol ids, No. 22, 243-256 (2003).

  17. S. D. Akbarov, A. N. Guz’, and M. A. Cherekov, “Stability of two fibers in a matrix under finite subcritical strains,” Mech. Com pos. Ma ter., 18, No. 1, 34-41 (1982).

    Article  Google Scholar 

  18. S. D. Akbarov and R. Kosker, “Internal stability loss of two neighboring fibers in a viscoelastic matrix,” Int. J. Eng. Sci., No. 42, 1847-1873 (2004).

    Google Scholar 

  19. S. D. Akbarov, R. Kosker, and Y. Ucan, “Stress distribution in an elastic body with a periodically curved row of fibers,” Mech. Com pos. Mater., 40, No. 3, 191-202 (2004).

    Article  Google Scholar 

  20. S. D. Akbarov, R. Kosker, and Y. Ucan, “Stress distribution in a composite material with the row of anti-phase periodically curved fibres,” Int. Appl. Mech., 42, No. 4, 486-493 (2006).

    Article  Google Scholar 

  21. A. N. Guz’, “Constructing the three-dimensional theory of stability of de formable bodies,” Int. Appl. Mech., 37, No. 1, 1-37 (2001).

    Article  Google Scholar 

  22. I. Yu. Babich, A. N. Guz’, and V. N. Chekhov, “The three-dimensional theory of stability of fibrous and laminated materials,” Int. Appl. Mech., 37, No. 9, 1103-1141 (2001).

    Article  Google Scholar 

  23. S. D. Akbarov, “Three-dimensional stability loss problems of the viscoelastic composite materials and structural members,” Int. Appl. Mech., 43, No. 10, 3-27 (2007).

    Article  MATH  Google Scholar 

  24. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of De form able Bodies, Springer (1999).

  25. A. N. Guz’, J. J. Rushchitsky, and I. A. Guz’, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3 (2007).

    Google Scholar 

  26. A. N. Guz’ and V. N. Chekhov, “Problems of folding in the earth’s stratified crust,” Int. Appl. Mech., 43, No. 2 (2007).

    Google Scholar 

  27. K. Q. Xiao, L. C. Zhang, and I. Zarudi, “Mechanical and rheological properties of carbon nanotube-reinforced poly ethylene composites”, Compos. Sci. Technol., 67, 77-182 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 45, No. 2, pp. 269-288, March-April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosker, R., Dikbas, D.M. Stress distribution in an infinite elastic body with a covered periodically curved fiber. Mech Compos Mater 45, 183–198 (2009). https://doi.org/10.1007/s11029-009-9070-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-009-9070-0

Keywords

Navigation