Skip to main content
Log in

An exact analysis for mode III cracks between two dissimilar magnetoelectroelastic layers

  • Published:
Mechanics of Composite Materials Aims and scope

This paper develops a closed-form solution for an interface crack in a layered magnetoelectroelastic strip of finite width. The strip is subjected to anti-plane mechanical and in-plane electric and magnetic fields. Explicit expressions for the stress, electric, and magnetic fields, together with their intensity factors, are obtained for two extreme cases of an impermeable and a permeable cracks. The stress intensity factor does not depend on the electromagnetic boundary conditions assumed for the crack. However, the electrically and magnetically permeable boundary conditions on the crack profile have a significant influence on the crack-tip electromagnetic field intensity factors. Solutions for some special cases, such as a central crack, an edge crack, two symmetric collinear cracks, and a row of collinear interface cracks, are also obtained in closed forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Y. Chung and T. C. T. Ting, “The Green function for a piezoelectric piezomagnetic anisotropic elastic medium with an elliptic hole or rigid inclusion,” Philos. Mag. Lett., 72, 405–410 (1995).

    Article  ADS  CAS  Google Scholar 

  2. J. X. Liu, X. L. Liu, and Y. B. Zhao, “Green's functions for anisotropic magnetoelectro-elastic solids with an elliptical cavity or a crack,” Int. J. Eng. Sci., 39, 1405–1418 (2001).

    Article  Google Scholar 

  3. X. Wang and Y. P. Shen, “The general solution of three-dimensional problems in magnetoelectroelastic media,” Int. J. Eng. Sci., 40, 1069–1080 (2002).

    MathSciNet  Google Scholar 

  4. C. F. Gao, H. Kessler, and H. Balke, “Crack problems in magnetoelectroelastic solids. Pt. I: Exact solution of a crack,” Int. J. Eng. Sci., 41, 969–981 (2003).

    Article  MathSciNet  Google Scholar 

  5. B. L. Wang and Y. W. Mai, “Fracture of piezoelectromagnetic materials,” Mech. Res. Commun., 31, No. 1, 65–73 (2004).

    Article  MATH  Google Scholar 

  6. C. F. Gao, P. Tong, and T. Y. Zhang, “Fracture mechanics for a mode III crack in a magnetoelectroelastic solid,” Int. J. Solids Struct., 41, 6613–6629 (2004).

    Article  MATH  Google Scholar 

  7. Z. G. Zhou, L. Z. Wu, and B. Wang, “The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading,” Arch. Appl. Mech., 74, No. 8, 526–535 (2005).

    Article  MATH  Google Scholar 

  8. W. Y. Tian and R.K.N.D. Rajapakse, “Fracture analysis of magnetoelectroelastic solids by using path in dependent integrals,” Int. J. Fract., 131, 311–335 (2005).

    Article  Google Scholar 

  9. M. H. Zhao, F. Yang, and T. Liu, “Analysis of a penny-shaped crack in a magneto-electro-elastic medium,” Philos. Mag., 86, 4397–4416 (2006).

    Article  ADS  CAS  Google Scholar 

  10. H. D. Yong and Y. H. Zhou, “Transient response of a cracked magnetoelectroelastic strip under anti-plane impact,” Int. J. Solid. Struct., 44, 705–717 (2007).

    Article  MATH  Google Scholar 

  11. M. Fiebig, “Revival of the magnetoelectric effect,” J. Phys. D: Appl. Phys., 38, R123–R152 (2005).

    Article  ADS  CAS  Google Scholar 

  12. H.-M. Si and C. Cho, “Finite element modeling of magnetostriction for multilayered MEMS devices,” J. Magn. Magn. Mater., 270, 167–173 (2004).

    Article  ADS  CAS  Google Scholar 

  13. R. Watts, M. R. J. Gibbs, W. J. Karl, and H. Szymczak, “Finite-element modelling of magnetostrictive bending of a coated cantilever,” Appl. Phys. Lett., 70, 2607–2609 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Y. Ootao and Y. Tanigawa, “Transient analysis of multilayered magneto-electro-thermoelastic strip due to nonuniform heat supply,” Compos. Struct., 68, No. 4, 471–480 (2005).

    Article  Google Scholar 

  15. J. Ryu, S. Priya, A. V. Carazo, K. Uchino, and H. E. Kim, “Effect of magnetostricitive layer on magnetoelectric properties in lead Zirconate Titanate/Terfenol-D laminate composites,” J. Amer. Ceram. Soc., 84, 2905–2908 (2001).

    Article  CAS  Google Scholar 

  16. J. Ryu, S. Priya, K. Uchino, and H. E. Kim, “Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials,” J. Electroceram., 8, 107–119 (2002).

    Article  CAS  Google Scholar 

  17. W. Y. Tian and U. Gabbert, “Parallel crack near the interface of magnetoelectroelastic bimaterials,” Comput. Mater. Sci., 32, Nos. 3–4, 562–567 (2005).

    Article  Google Scholar 

  18. C. F. Gao and N. Noda, “Thermal-induced interfacial cracking of magnetoelectroelastic material,” Int. J. Eng. Sci., 42, 1347–1360 (2004).

    Article  Google Scholar 

  19. X. C. Zhong and X. F. Li, “A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials,” Int. J. Eng. Sci., 44, 1394–1407 (2006).

    Article  Google Scholar 

  20. W. J. Feng and R. K. L. Su, “Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip,” Int. J. Solid. Struct., 43, 5196–5216 (2006).

    Article  MATH  Google Scholar 

  21. K. Q. Hu, Y. L. Kang, and G. Q. Li, “Moving crack at the interface between two dissimilar magnetoelectroelastic materials,” Acta Mech., 182, 1–16 (2006).

    Article  MATH  Google Scholar 

  22. V. Z. Parton and B. A. Kudryavtsev, Electroelasticity of Piezoelectric and Electroconductive Bodies [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  23. D. I. Bardzokas, M. L. Filshtisky, and L. A. Filshtinsky, Mathematical Methods in Electromagnetoelasticity, Springer-Verlag, Berlin (2007).

    Google Scholar 

  24. X. F. Li, “Two perfectly bonded dissimilar orthotropic strips with an interfacial crack normal to the boundaries,” Appl. Math. Comput., 163, 961–975 (2005)..

    Article  MATH  MathSciNet  Google Scholar 

  25. N. I. Muskhelisvili, Singular Integral Equations, Noordho, Groningen (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 6, pp. 763–784, November–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, BL., Mai, YW. An exact analysis for mode III cracks between two dissimilar magnetoelectroelastic layers. Mech Compos Mater 44, 533–548 (2008). https://doi.org/10.1007/s11029-009-9056-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-009-9056-y

Keywords

Navigation