Skip to main content
Log in

Dissimilar nonhomogeneous magnetoelectroelastic layers with moving crack at the interface

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the dynamic fracture problem of multiple moving cracks at the interface of two dissimilar functionally graded magnetoelectroelastic (FGMEE) layers subjected to anti-plane mechanical and in-plane magnetoelectrical loads is considered. The magnetoelectromechanical properties are assumed to vary exponentially with the coordinate perpendicular to the cracks. The integral transform technique is employed to solve the moving crack problem at the interface of dissimilar FGMEE layers. Numerical values for the field intensity factors are graphically presented and the effects of the crack velocity, nonhomogeneity parameter, and material volume fraction on the field intensity factor are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen Z, Yu S (1997) Anti-plane Yoffe crack problem in piezoelectric materials. Int J Fract 84:L41–L45

    Google Scholar 

  2. Kwon JH, Lee KY (2000) Moving interfacial crack between piezoelectric ceramic and elastic layers. Eur J Mech A Solids 19:979–987

    Article  Google Scholar 

  3. Wang X, Zhong Z, Wu FL (2003) A moving conducting crack at the interface of two dissimilar piezoelectric materials. Int J Solids Struct 40:2381–2399

    Article  Google Scholar 

  4. Bagheri R, Ayatollahi M, Mousavi SM (2015) Analytical solution of multiple moving cracks in functionally graded piezoelectric strip. Appl Math Mech 36:777–792

    Article  MathSciNet  Google Scholar 

  5. Gao CF, Pin T, Yi Z (2003) Interfacial crack problems in magneto-electro elastic solids. Int J Eng Sci 41:2105–2121

    Article  Google Scholar 

  6. Gao CF, Noda N (2004) Thermal-induced interfacial cracking of magnetoelectroelastic materials. Int J Eng Sci 42:1347–1360

    Article  Google Scholar 

  7. Hu K, Li G (2005) Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. Int J Solids Struct 42:2823–2835

    Article  Google Scholar 

  8. Hu KQ, Kang YL, Li GL (2006) Moving crack at the interface between two dissimilar magnetoelectroelastic materials. Acta Mech 182:1–16

    Article  Google Scholar 

  9. Zhong XC, Li XF (2006) A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials. Int J Eng Sci 44:1394–1407

    Article  Google Scholar 

  10. Zhao SX, Lee KY (2007) Moving interfacial crack between two dissimilar soft ferromagnetic materials in uniform magnetic field. J Mech Sci Tech 21:745–754

    Article  Google Scholar 

  11. Hu KQ, Kang YL, Qin QH (2007) A moving crack in a rectangular magnetoelectroelastic body. Eng Fract Mech 74:751–770

    Article  Google Scholar 

  12. Feng WJ, Pan E (2008) Dynamic fracture behavior of an internal interfacial crack between two dissimilar magneto-electro-elastic plates. Eng Fract Mech 75:1468–1487

    Article  Google Scholar 

  13. Tupholme GE (2009) Moving antiplane shear crack in transversely isotropic magnetoelectroelastic media. Acta Mech 202:153–162

    Article  Google Scholar 

  14. Shin JW, Lee YS (2010) A moving interface crack between two dissimilar functionally graded piezoelectric layers under electromechanical loading. Int J Solids Struct 47:2706–2713

    Article  Google Scholar 

  15. Tupholme GE (2012) Magnetoelectroelastic media containing a row of moving shear cracks. Mech Res Commun 45:48–53

    Article  Google Scholar 

  16. Fu J, Hu K, Chen Z, Qian L (2013) A moving crack propagating in a functionally graded magnetoelectroelastic strip under different crack face conditions. Theor Appl Fract Mech 66:16–25

    Article  Google Scholar 

  17. Hu K, Chen Z (2013) Pre-kinking of a moving crack in a magnetoelectroelastic material under in-plane loading. Int J Solids Struct 50:2667–2677

    Article  Google Scholar 

  18. Hu K, Chen Z (2014) An interface crack moving between magnetoelectroelastic and functionally graded elastic layers. Appl Math Model 38:910–925

    Article  MathSciNet  Google Scholar 

  19. Yue Y, Wan Y (2014) Multilayered piezomagnetic/piezoelectric composite with periodic interfacial Yoffe-type cracks under magnetic or electric field. Acta Mech 225:2133–2150

    Article  Google Scholar 

  20. Hu K, Chen Z, Fu J (2015) Moving Dugdale crack along the interface of two dissimilar magnetoelectroelastic materials. Acta Mech 226:2065–2076

    Article  MathSciNet  Google Scholar 

  21. Xia X, Zhong Z (2015) A mode III moving interfacial crack based on strip magneto-electric polarization saturation model. Smart Mater Struct 24:1–15

    Article  Google Scholar 

  22. Bagheri R, Ayatollahi M, Mousavi SM (2015) Stress analysis of a functionally graded magneto-electro-elastic strip with multiple moving cracks. Math Mech Solids 22:304–323

    Article  MathSciNet  Google Scholar 

  23. Ma P, Su RKL, Feng WJ (2017) Moving crack with a contact zone at interface of magnetoelectroelastic biomaterial. Eng Fract Mech 181:143–160

    Article  Google Scholar 

  24. Ayatollahi M, Mahmoudi Monfared M, Nourazar M (2017) Analysis of multiple moving mode-III cracks in a functionally graded magnetoelectroelastic half-plane. J Intell Mater Syst Struct 28:2823–2834

    Article  Google Scholar 

  25. Bagheri RM, Noroozi M (2018) The linear steady state analysis of multiple moving cracks in a piezoelectric half-plane under in-plane electro-elastic loading. Theor Appl Fract Mech 96:334–350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Ayatollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The coefficients of Eq. (14) are

$$\begin{aligned} A_{2}^{(2)} (\omega )= & {} \frac{b_{z} }{P\hat{{R}}-\hat{{P}}}(\pi \delta (\omega )-\mathrm{i} \big / \omega ), \nonumber \\ B_{2}^{(2)} (\omega )= & {} \frac{mb_{z} -b_{\varphi } }{\hat{{Q}}-QR}(\pi \delta (\omega )-\mathrm{i} \big / \omega ), \nonumber \\ C_{2}^{(2)} (\omega )= & {} \frac{nb_{z} -b_{\psi } }{\hat{{Q}}-QR}(\pi \delta (\omega )-\mathrm{i} \big / \omega ), \nonumber \\ A_{1}^{(2)} (\omega )= & {} -\mathrm{e}^{-2\gamma _{3} h_{2} }\frac{\lambda -\gamma _{3} }{\lambda +\gamma _{3} }\frac{b_{z} }{P\hat{{R}}-\hat{{P}}}(\pi \delta (\omega )-\mathrm{i} \big / \omega ), \nonumber \\ B_{1}^{(2)} (\omega )= & {} -\mathrm{e}^{-2\gamma _{4} h_{2} }\frac{\lambda -\gamma _{4} }{\lambda +\gamma _{4} }\frac{mb_{z} -b_{\varphi } }{\hat{{Q}}-QR}(\pi \delta (\omega )-\mathrm{i} \big / \omega ), \nonumber \\ C_{1}^{(2)} (\omega )= & {} -\mathrm{e}^{-2\gamma _{4} h_{2} }\frac{\lambda -\gamma _{4} }{\lambda +\gamma _{4} }\frac{nb_{z} -b_{\psi } }{\hat{{Q}}-QR}(\pi \delta (\omega )-\mathrm{i} \big / \omega ). \end{aligned}$$
(A-1)

In the above equations

$$\begin{aligned} P= & {} 1-\mathrm{e}^{-2\gamma _{1} h_{1} }\frac{\beta +\gamma _{1} }{\beta -\gamma _{1} },\quad \quad \hat{{P}}=1-\mathrm{e}^{-2\gamma _{3} h_{2} }\frac{\lambda -\gamma _{3} }{\lambda +\gamma _{3} }, \end{aligned}$$
(A-2)
$$\begin{aligned} Q= & {} 1-\mathrm{e}^{-2\gamma _{2} h_{1} }\frac{\beta +\gamma _{2} }{\beta -\gamma _{2} },\quad \quad \hat{{Q}}=1-\mathrm{e}^{-2\gamma _{4} h_{2} }\frac{\lambda -\gamma _{4} }{\lambda +\gamma _{4} }, \end{aligned}$$
(A-3)
$$\begin{aligned} R= & {} \frac{(\lambda -\gamma _{4} )(1-\mathrm{e}^{-2\gamma _{4} h_{2} })}{(\beta +\gamma _{2} )(1-\mathrm{e}^{-2\gamma _{2} h_{1} })},\quad \quad \hat{{R}}=\frac{(\lambda -\gamma _{3} )(1-\mathrm{e}^{-2\gamma _{3} h_{2} })}{(\beta +\gamma _{1} )(1-\mathrm{e}^{-2\gamma _{1} h_{1} })}, \end{aligned}$$
(A-4)

the following functions are used in the field components.

$$\begin{aligned} T_{1} (\gamma _{1} ,\gamma _{3} )= & {} \int \limits _0^{+\infty } {(\mathrm{e}^{\gamma _{3} y}-\mathrm{e}^{-\gamma _{3} (y+2h_{2} )})\frac{\lambda -\gamma _{3} }{\omega (P\hat{{R}}-\hat{{P}})}\sin \omega x\,\mathrm{d}\omega }, \end{aligned}$$
(A-5)
$$\begin{aligned} T_{2} (\gamma _{2} ,\gamma _{4} )= & {} \int \limits _0^{+\infty } {(\mathrm{e}^{\gamma _{4} y}-\mathrm{e}^{-2\gamma _{4} h_{2} }\mathrm{e}^{-\gamma _{4} y})\frac{\lambda -\gamma _{4} }{\omega (\hat{{Q}}-QR)}\sin \omega x\,\mathrm{d}\omega }, \end{aligned}$$
(A-6)
$$\begin{aligned} T_{3} (\gamma _{1} ,\gamma _{3} )= & {} \int \limits _0^{+\infty } {\left[ (\mathrm{e}^{\gamma _{3} y}-\mathrm{e}^{-\gamma _{3} (y+2h_{2} )})\frac{\lambda -\gamma _{3} }{\omega (P\hat{{R}}-\hat{{P}})}-\frac{K}{2}\mathrm{e}^{K\omega y}\right] \sin \omega x\,\mathrm{d}\omega }, \end{aligned}$$
(A-7)
$$\begin{aligned} T_{4} (\gamma _{2} ,\gamma _{4} )= & {} \int \limits _0^{+\infty } {\left( (\mathrm{e}^{\gamma _{4} y}-\mathrm{e}^{-\gamma _{4} (y+2h_{2} )})\frac{\lambda -\gamma _{4} }{\omega (\hat{{Q}}-QR)}+\frac{\mathrm{e}^{\omega y}}{2}\right) \sin \omega x\,\mathrm{d}\omega }, \end{aligned}$$
(A-8)

The kernels of singular integral equations (18) are:

$$\begin{aligned} K_{ij}^{11} (s,t)= & {} \,\,-\frac{K\mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi }\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+[K(y_{i} -y_{j} )]^{2}}+\frac{[(e_{150} m+h_{150} n)]\mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi \tilde{{c}}_{44} }\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}}, \nonumber \\&\quad -\int \limits _0^{+\infty } {\left[ \frac{(\lambda -\gamma _{3} )(\mathrm{e}^{\gamma _{3} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{3} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (P\hat{{R}}-\hat{{P}})}-\frac{K}{2}\mathrm{e}^{k\omega (y_{i} -y_{j} )}\right] \sin \omega (x_{i} -x_{j} )\mathrm{d}\omega }, \nonumber \\&\quad -\frac{(e_{150} m+h_{150} n)\mathrm{e}^{\lambda (y_{i} -y_{j} )}}{\pi \tilde{{c}}_{44} }\int \limits _0^{+\infty } \left[ \frac{(\lambda -\gamma _{4} )(\mathrm{e}^{\gamma _{4} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{4} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (\hat{{Q}}-QR)}+\frac{1}{2}\mathrm{e}^{\omega (y_{i} -y_{j} )}\right] \nonumber \\&\qquad \times \sin \omega (x_{i} -x_{j} )\mathrm{d}\omega , \nonumber \\ K_{ij}^{12} (s,t)= & {} \,\,-\frac{e_{150} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi \tilde{{c}}_{44} }\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}}+\frac{e_{150} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{\pi \tilde{{c}}_{44} }, \nonumber \\&\quad \times \,\int \limits _0^{+\infty } {\left[ \frac{(\lambda -\gamma _{4} )(\mathrm{e}^{\gamma _{4} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{4} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (\hat{{Q}}-QR)}+\frac{1}{2}\mathrm{e}^{\omega (y_{i} -y_{j} )}\right] \sin \omega (x_{i} -x_{j} )\mathrm{d}\omega }, \nonumber \\ K_{ij}^{13} (s,t)= & {} \,\,-\frac{h_{150} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi \tilde{{c}}_{44} }\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}}+\frac{h_{150} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{\pi \tilde{{c}}_{44} } \nonumber \\&\quad \times \,\int \limits _0^{+\infty } {\left[ \frac{(\lambda -\gamma _{4} )(\mathrm{e}^{\gamma _{4} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{4} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (\hat{{Q}}-QR)}+\frac{\mathrm{e}^{\omega (y_{i} -y_{j} )}}{2}\right] \sin \omega (x_{i} -x_{j} )\mathrm{d}\omega }, \nonumber \end{aligned}$$
$$\begin{aligned} K_{ij}^{21} (s,t)= & {} \,\,\frac{\mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi }\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}}+\frac{\mathrm{e}^{\lambda (y_{i} -y_{j} )}}{\pi } \nonumber \\&\quad \times \int \limits _0^{+\infty } {\left[ \frac{(\lambda -\gamma _{4} )(\mathrm{e}^{\gamma _{4} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{4} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (\hat{{Q}}-QR)}+\frac{\mathrm{e}^{\omega (y_{i} -y_{j} )}}{2}\right] \sin \omega (x_{i} -x_{j} )\mathrm{d}\omega }, \nonumber \\ K_{ij}^{22} (s,t)= & {} \,\,\frac{d_{110} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi (d_{110} m+\beta _{110} n)}\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}}-\frac{d_{110} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{\pi (d_{110} m+\beta _{110} n)}, \nonumber \\&\quad \times \int \limits _0^{+\infty } {\left[ \frac{(\lambda -\gamma _{4} )(\mathrm{e}^{\gamma _{4} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{4} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (\hat{{Q}}-QR)}+\frac{\mathrm{e}^{\omega (y_{i} -y_{j} )}}{2}\right] \sin \omega (x_{i} -x_{j} )\mathrm{d}\omega }, \nonumber \\ K_{ij}^{23} (s,t)= & {} \,\,\frac{\beta _{110} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi (d_{110} m+\beta _{110} n)}\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}}-\frac{\beta _{110} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{\pi (d_{110} m+\beta _{110} n)}, \nonumber \\&\quad \times \,\int \limits _0^{+\infty } {[\frac{(\lambda -\gamma _{4} )(\mathrm{e}^{\gamma _{4} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{4} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (\hat{{Q}}-QR)}+\frac{\mathrm{e}^{\omega (y_{i} -y_{j} )}}{2}]\sin \omega (x_{i} -x_{j} )\mathrm{d}\omega } \nonumber \\ K_{ij}^{31} (s,t)= & {} \,\,\frac{\mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi }\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}}+\frac{\mathrm{e}^{\lambda (y_{i} -y_{j} )}}{\pi }, \nonumber \\&\quad \times \int \limits _0^{+\infty } {\left[ \frac{(\lambda -\gamma _{4} )(\mathrm{e}^{\gamma _{4} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{4} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (\hat{{Q}}-QR)}+\frac{\mathrm{e}^{\omega (y_{i} -y_{j} )}}{2}\right] \sin \omega (x_{i} -x_{j} )\mathrm{d}\omega }, \nonumber \\ K_{ij}^{32} (s,t)= & {} \,\,\frac{\beta _{110} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi (\beta _{110} m+\gamma _{110} n)}\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}}\,-\frac{\beta _{110} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{\pi (\beta _{110} m+\gamma _{110} n)}, \nonumber \\&\quad \times \int \limits _0^{+\infty } {\left[ \frac{(\lambda -\gamma _{4} )(\mathrm{e}^{\gamma _{4} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{4} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (\hat{{Q}}-QR)}+\frac{\mathrm{e}^{\omega (y_{i} -y_{j} )}}{2}\right] \sin \omega (x_{i} -x_{j} )\mathrm{d}\omega }, \nonumber \\ K_{ij}^{33} (s,t)= & {} \,\,\frac{\gamma _{110} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{2\pi (\beta _{110} m+\gamma _{110} n)}\frac{x_{i} -x_{j} }{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}}-\frac{\gamma _{110} \mathrm{e}^{\lambda (y_{i} -y_{j} )}}{\pi (\beta _{110} m+\gamma _{110} n)}, \nonumber \\&\quad \times \int \limits _0^{+\infty } {\left[ \frac{(\lambda -\gamma _{4} )(\mathrm{e}^{\gamma _{4} (y_{i} -y_{j} )}-\mathrm{e}^{-\gamma _{4} ((y_{i} -y_{j} )+2h_{2} )})}{\omega (\hat{{Q}}-QR)}+\frac{\mathrm{e}^{\omega (y_{i} -y_{j} )}}{2}\right] \sin \omega (x_{i} -x_{j} )\mathrm{d}\omega }. \end{aligned}$$
(A-9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayatollahi, M., Milan, A.G. Dissimilar nonhomogeneous magnetoelectroelastic layers with moving crack at the interface. J Eng Math 133, 8 (2022). https://doi.org/10.1007/s10665-022-10212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-022-10212-z

Keywords

Navigation