Advertisement

Minds and Machines

, Volume 28, Issue 3, pp 445–463 | Cite as

Computers in Abstraction/Representation Theory

  • Samuel C. Fletcher
Article
  • 77 Downloads

Abstract

Recently, Horsman et al. (Proc R Soc Lond A 470:20140182, 2014) have proposed a new framework, Abstraction/Representation (AR) theory, for understanding and evaluating claims about unconventional or non-standard computation. Among its attractive features, the theory in particular implies a novel account of what is means to be a computer. After expounding on this account, I compare it with other accounts of concrete computation, finding that it does not quite fit in the standard categorization: while it is most similar to some semantic accounts, it is not itself a semantic account. Then I evaluate it according to the six desiderata for accounts of concrete computation proposed by Piccinini (Physical computation: a mechanistic account, Oxford University Press, Oxford, 2015). Finding that it does not clearly satisfy some of them, I propose a modification, which I call Agential AR theory, that does, yielding an account that could be a serious competitor to other leading account of concrete computation.

Keywords

Concrete computation Computer Pancomputationalism Representation 

References

  1. Bueno, O. (2014). Nominalism in the philosophy of mathematics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2014 edition.Google Scholar
  2. Chakravartty, A. (2017). Scientific realism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2017 edition.Google Scholar
  3. Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3), 310–333.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Copeland, B. J. (1996). What is computation? Synthese, 108(3), 335–359.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Corless, R., & Fillion, N. (2014). A graduate introduction to numerical methods. New York: Springer.zbMATHGoogle Scholar
  6. Egan, F. (1999). In defence of narrow mindedness. Mind and Language, 14(2), 177–94.CrossRefGoogle Scholar
  7. Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.Google Scholar
  8. Fodor, J. A. (1981). The mind–body problem. Scientific American, 244, 114–125.CrossRefGoogle Scholar
  9. Frege, G. (1953). Foundations of arithmetic (J. L. Austin, Trans). Oxford: Blackwell.Google Scholar
  10. Frigg, R., & Nguyen, J. (2016). Scientific representation. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2016 edition.Google Scholar
  11. Horsman, C., Stepney, S., Wagner, R. C., & Kendon, V. (2014). When does a physical system compute? Proceedings of the Royal Society of London A, 470, 20140182.CrossRefzbMATHGoogle Scholar
  12. Horsman, D. (2017). The representation of computation in physical systems. In M. Massimi, J.-W. Romeijn, & G. Schurz (Eds.), EPSA15 selected papers (pp. 191–204). Cham: Springer.CrossRefGoogle Scholar
  13. Horsman, D., Kendon, V., & Stepney, S. (2017a). The natural science of computing. Communications of the ACM, 60(8), 31–34.CrossRefGoogle Scholar
  14. Horsman, D., Kendon, V., & Stepney, S. (2018). Abstraction/representation theory and the natural science of computation. In M. E. Cuffaro & S. C. Fletcher (Eds.), Physical perspectives on computation, computational perspectives on physics (pp. 127–149). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Horsman, D., Kendon, V., Stepney, S., & Young, J. P. W. (2017b). Abstraction and representation in living organisms: When does a biological system compute? In G. Dodig-Crnkovic & R. Giovagnoli (Eds.), Representation and reality in humans, other living organisms and intelligent machines (pp. 91–116). Cham: Springer International Publishing.CrossRefGoogle Scholar
  16. Horsman, D. C. (2015). Abstraction/representation theory for heterotic physical computing. Philosophical Transactions of the Royal Society of London A, 373, 20140224.CrossRefGoogle Scholar
  17. Linnebo, Ø. (2018). Platonism in the philosophy of mathematics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2018 edition.Google Scholar
  18. Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., et al. (2008). Galaxy zoo: Morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 389(3), 1179–1189.CrossRefGoogle Scholar
  19. Maroney, O. J. E., & Timpson, C. G. (2018). How is there a physics of information? On characterizing physical evolution as information processing. In M. E. Cuffaro & S. C. Fletcher (Eds.), Physical perspectives on computation, computational perspectives on physics (pp. 103–126). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Maudlin, T. (1989). Computation and consciousness. Journal of Philosophy, 86(8), 407–432.CrossRefGoogle Scholar
  21. Monton, B., & Mohler, C. (2017). Constructive empiricism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2017 edition.Google Scholar
  22. Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501–526.MathSciNetCrossRefGoogle Scholar
  23. Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.CrossRefzbMATHGoogle Scholar
  24. Piccinini, G. (2017). Computation in physical systems. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2017 edition.Google Scholar
  25. Putnam, H. (1960). Minds and machines. In S. Hook (Ed.), Dimensions of mind: A symposium (pp. 138–164). New York: Collier.Google Scholar
  26. Quine, W. (1969). Existence and quantification. Ontological relativity and other essays (pp. 91–113). New York: Columbia University Press.Google Scholar
  27. Reiss, J., & Sprenger, J. (2017). Scientific objectivity. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2017 edition.Google Scholar
  28. Robidoux, N. (2002). Numerical solution of the steady diffusion equation with discontinuous coefficients. Ph.D. thesis, University of New Mexico.Google Scholar
  29. Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153(3), 393–416.MathSciNetCrossRefGoogle Scholar
  30. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.zbMATHGoogle Scholar
  31. Suárez, M. (2003). Scientific representation: Against similarity and isomorphism. International Studies in the Philosophy of Science, 17(3), 225–44.MathSciNetCrossRefGoogle Scholar
  32. Sutner, K. (2018). Physics-like models of computation. In M. E. Cuffaro & S. C. Fletcher (Eds.), Physical perspectives on computation, computational perspectives on physics (pp. 151–171). Cambridge: Cambridge University Press.Google Scholar
  33. Tedre, M. (2011). Computing as a science: A survey of competing viewpoints. Minds and Machines, 21(3), 361–387.CrossRefGoogle Scholar
  34. van Fraassen, B. C. (1980). The scientific image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  35. van Fraassen, B. C. (2005). The day of the dolphins: Puzzling over epistemic partnership. In A. Irvine & K. Peacock (Eds.), Mistakes of reason: Essays in honour of John Woods (pp. 111–133). Toronto: University of Toronto Press.Google Scholar
  36. van Fraassen, B. C. (2008). Scientific representation: Paradoxes of perspective. Oxford: Oxford University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Minnesota, Twin CitiesMinneapolisUSA

Personalised recommendations