Skip to main content

Advertisement

Log in

Why we view the brain as a computer

  • Original Paper
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The view that the brain is a sort of computer has functioned as a theoretical guideline both in cognitive science and, more recently, in neuroscience. But since we can view every physical system as a computer, it has been less than clear what this view amounts to. By considering in some detail a seminal study in computational neuroscience, I first suggest that neuroscientists invoke the computational outlook to explain regularities that are formulated in terms of the information content of electrical signals. I then indicate why computational theories have explanatory force with respect to these regularities:in a nutshell, they underscore correspondence relations between formal/mathematical properties of the electrical signals and formal/mathematical properties of the represented objects. I finally link my proposal to the philosophical thesis that content plays an essential role in computational taxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit D.J. (1989). Modelling brain function. Cambridge University Press, Cambridge

    Google Scholar 

  • Andersen R.A., Essick G.K., Siegel R.M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230(4724): 456–458

    Article  Google Scholar 

  • Buneo C.A., Jarvis M.R., Batista A.P., Andersen R.A. (2002). Direct visuomotor transformations for reaching. Nature, 416, 632–636

    Article  Google Scholar 

  • Burge T. (1986). Individualism and psychology. Philosophical Review 95, 3–45

    Article  Google Scholar 

  • Chalmers D.J. (1996). Does a rock implement every finite-state automaton?. Synthese, 108, 309–333

    Article  Google Scholar 

  • Chomsky N. (1980). Rules and representations. Columbia University Press, New York

    Google Scholar 

  • Churchland P.S., Grush R. (1999). Computation and the brain. In: Wilson R.A., Keil F.C (eds). The MIT Encyclopedia of the cognitive sciences. MIT Press, Cambridge, MA, pp. 155–158

    Google Scholar 

  • Churchland P.S., Koch C., Sejnowski T.J. (1990). What is computational neuroscience?. In: Schwartz E.L. (eds). Computational neuroscience. MIT Press, Cambridge, MA, pp. 46–55

    Google Scholar 

  • Churchland P.S., Sejnowski T.J. (1992). The computational brain. MIT Press, Cambridge, MA

    Google Scholar 

  • Craver C.F. (2002). Structures of scientific theories. In: Machamer P., Silberstein M. (eds). The Blackwell Guide to the Philosophy of Science. Blackwell, Oxford, pp. 55–79

    Google Scholar 

  • Davidson D. (1990). Turing’s Test. In: Mohyeldin Said K.A., Newton-Smith W.H., Viale R., Wilkes K.V. (Eds). Modeling the mind. Oxford University Press, Oxford, pp. 1–11

    Google Scholar 

  • Davies M. (1991). Individualism and perceptual content. Mind, 100, 461–484

    Google Scholar 

  • Dennett D.C. (1971). Intentional systems. Journal of Philosophy, 68, 87–106

    Article  Google Scholar 

  • Dretske F. (1988). Explaining behavior. MIT Press, Cambridge, MA

    Google Scholar 

  • Egan F. (1995). Computation and content. Philosophical Review, 104, 181–203

    Article  Google Scholar 

  • Fodor J.A. (1974). Special sciences, or the disunity of science as a working hypothesis. Synthese, 28, 97–115

    Article  Google Scholar 

  • Fodor J.A. (1980). Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences, 3, 63–73

    Google Scholar 

  • Fodor J.A. (1981). The mind-body problem. Scientific American, 244, 114–123

    Google Scholar 

  • Fodor J.A. (1994). The elm and the expert. MIT Press, Cambridge, MA

    Google Scholar 

  • Fodor J.A., Pylyshyn Z.W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71

    Article  Google Scholar 

  • Gödel, K. (1933). The present situation in the foundations of mathematics. In S. J. W. Dawson, W. Goldfarb, C. Parsons, & R. M. Solovay (Eds.), Kurt Gödel collected works, Vol. III (pp. 45–53). New York: Oxford University Press (1995).

  • Gödel, K. (1934). On undecidable propositions of formal mathematical systems. In S. Feferman, J. W. Dawson, S. C. Kleene, G. H. Moore, R. M. Solovay, & J. van Heijenoort (Eds.), Kurt Gödel collected works, Vol. I (pp. 346–371). New York: Oxford University Press (1986).

  • Grush R. (2001). The semantic challenge to computational neuroscience. In: Grush P.R., McLaughlin P. (eds). Theory and method in the neurosciences. University of Pittsburgh Press, Pittsburgh, PA, pp. 155–172

    Google Scholar 

  • Haugeland J. (1981). Semantic engines. In: Haugeland J. (eds). Mind design. MIT Press, Cambridge, MA, pp. 1–34

    Google Scholar 

  • Hogarth M.L. (1992). Does General Relativity allow an observer to view an eternity in a finite time?. Foundations of Physics Letters, 5, 173–181

    Article  Google Scholar 

  • Hogarth M. (1994). Non-Turing computers and non-Turing computability. Proceedings of the Philosophy of Science Association, 1, 126–138

    Google Scholar 

  • Kitcher P. (1988). Marr’s computational theory of vision. Philosophy of Science, 55, 1–24

    Article  Google Scholar 

  • Lehky S.R., Sejnowski T.J. (1988). Network model of shape-from-shading: Neural function arises from both receptive and projective fields. Nature, 333, 452–454

    Article  Google Scholar 

  • Marr D. (1982). Vision. W. H. Freeman, San Francisco

    Google Scholar 

  • Morton P. (1993). Supervenience and computational explanation in vision theory. Philosophy of Science, 60, 86–99

    Article  Google Scholar 

  • Newell A., Simon H. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the Association for Computing Machinery, 19, 113–126

    Google Scholar 

  • Peacocke C. (1994). Content, computation, and externalism. Mind and Language, 9, 303–335

    Google Scholar 

  • Peacocke C. (1999). Computation as involving content: A response to Egan. Mind and Language, 14, 195–202

    Article  Google Scholar 

  • Piccinini G. (2004). Functionalism, computationalism, and mental contents. Canadian Journal of Philosophy, 34, 375–410

    Google Scholar 

  • Piccinini, G. (forthcoming). Computation without representation. Philosophical Studies.

  • Pour-El M.B., Richards I. (1981). The wave equation with computable initial data such that its unique solution is not computable. Advances in Mathematics, 39, 215–239

    Article  Google Scholar 

  • Putnam H. (1973). Reductionism and the nature of psychology. Cognition, 2, 131–146

    Article  Google Scholar 

  • Putnam, H. (1975). Philosophy and our mental life. In H. Putnam (Ed.), Mind, language and reality, philosophical papers, volume 2 (pp. 291–303). Cambridge: Cambridge University Press.

  • Putnam H. (1988). Representations and reality. MIT Press, Cambridge, MA

    Google Scholar 

  • Pylyshyn Z.W. (1984). Computation and cognition. MIT Press, Cambridge, MA

    Google Scholar 

  • Rumelhart, D. E., McLelland, J. L., & the PDP Research Group (1986). Parallel distributed processing, Vol. 1–2. Cambridge, MA: MIT Press.

  • Scheutz M. (2001). Computational versus causal complexity. Minds and Machines, 11, 543–566

    Article  Google Scholar 

  • Searle J.R. (1992). The rediscovery of the mind. MIT Press, Cambridge, MA

    Google Scholar 

  • Segal G. (1989). Seeing what is not there. Philosophical Review, 98, 189–214

    Article  Google Scholar 

  • Segal G. (1991). Defense of a reasonable individualism. Mind, 100, 485–494

    Google Scholar 

  • Sejnowski T. J., Koch C., Churchland P.S. (1988). Computational neuroscience. Science, 241(4871): 1299–1306

    Article  Google Scholar 

  • Shadmehr R., Wise S.P. (2005). The computational neurobiology of reaching and pointing: A foundation for motor learning. MIT Press, Cambridge, MA

    Google Scholar 

  • Shagrir O. (1992). A neural net with self-inhibiting units for the n-queens problem. International Journal of Neural Systems, 3, 249–252

    Article  Google Scholar 

  • Shagrir O. (1997). Two dogmas of computationalism. Minds and Machines, 7, 321–344

    Article  Google Scholar 

  • Shagrir O. (1998). Multiple realization, computation and the taxonomy of psychological states. Synthese, 114, 445–461

    Article  Google Scholar 

  • Shagrir O. (1999). What is computer science about?. Monist, 82, 131–149

    Google Scholar 

  • Shagrir O. (2001). Content, computation and externalism. Mind, 110, 369–400

    Article  Google Scholar 

  • Shagrir O. (2006). Gödel on turing on computability. In: Olszewski A., Wolenski J., Janusz R. (eds). Church’s thesis after 70 years. Ontos Verlag, Frankfurt, pp. 393–419

    Google Scholar 

  • Shagrir O., Pitowsky I. (2003). Physical hypercomputation and the Church–Turing thesis. Minds and Machines, 13, 87–101

    Article  Google Scholar 

  • Sher G.Y. (1991). The bounds of logic: A generalized viewpoint. MIT Press, Cambridge, MA

    Google Scholar 

  • Sher G.Y. (1996). Did Tarski commit “Tarski’s Fallacy”?. Journal of Symbolic Logic, 61, 653–686

    Article  Google Scholar 

  • Smith B.C. (1996). On the origin of objects. MIT Press, Cambridge, MA

    Google Scholar 

  • Smolensky P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11, 1–23

    Article  Google Scholar 

  • Sober E. (1999). The multiple realizability argument against reductionism. Philosophy of Science, 66, 542–564

    Article  Google Scholar 

  • Stich S.P. (1983). From folk psychology to cognitive science. MIT Press, Cambridge, MA

    Google Scholar 

  • Wilson R.A. (1994). Wide computationalism. Mind, 103, 351–372

    Google Scholar 

  • Zipser D., Andersen R.A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331, 679–684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oron Shagrir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shagrir, O. Why we view the brain as a computer. Synthese 153, 393–416 (2006). https://doi.org/10.1007/s11229-006-9099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-006-9099-8

Keywords

Navigation