Skip to main content

Advertisement

Log in

Is tissue engineering a new paradigm in medicine? Consequences for the ethical evaluation of tissue engineering research

  • Scientific Contribution
  • Published:
Medicine, Health Care and Philosophy Aims and scope Submit manuscript

Abstract

Ex-vivo tissue engineering is a quickly developing medical technology aiming to regenerate tissue through the introduction of an ex-vivo created tissue construct instead of restoring the damaged tissue to some level of functionality. Tissue engineering is considered by some as a new medical paradigm. We analyse this claim and identify tissue engineering’s fundamental characteristics, focusing on the aim of the intervention and on the complexity and continuity of the process. We inquire how these features have an impact not only on the scientific research itself but also on the ethical evaluation of this research. We suggest that viewing tissue engineering as a new medical paradigm allows us to develop a wider perspective for successful investigation instead of focusing on isolated steps of the tissue engineering process in an anecdotal way, which may lead to an inadequate ethical evaluation. We argue that the concept of tissue engineering as a paradigm may benefit the way we address the ethical challenges presented by tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahsan, T., and R.M. Nerem. 2005. Bioengineered tissues: The science, the technology, and the industry. Orthodontics and Craniofacial Research 8: 134–140.

    Article  CAS  PubMed  Google Scholar 

  • Atala, A., S. Bauer, S. Soker, et al. 2006. Tissue-engineered autologous bladders for patients needing cystoplasty. The Lancet 367: 1241–1246.

    Article  Google Scholar 

  • Auger, F.A., F. Berthod, V. Moulin, et al. 2004. Tissue-engineered skin substitutes: From in vitro constructs to in vivo applications. Biotechnology and Applied Biochemistry 39: 263–275.

    Article  CAS  PubMed  Google Scholar 

  • Bajada, S., I. Mazakova, J.B. Richardson, and N. Ashammakhi. 2008. Updates on stem cells and their applications in regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine 2: 169–183.

    Article  CAS  PubMed  Google Scholar 

  • Behfar, A., and A. Terzic. 2007. Cardioprotective repair through stem cell-based cardiopoiesis. Journal of Applied Physiology 103: 1438–1440.

    Article  PubMed  Google Scholar 

  • Bock A.-K., D. Ibaretta, and E. Rodriguez-Cerezo. 2003. Human tissue-engineered products. Today’s markets and future prospects. EUR21000EN. European Commission, Brussels: JRC-IPTS.

  • Bolland, B.J., S. Tilley, A.M. New, et al. 2007. Adult mesenchymal stem cells and impaction grafting: A new clinical paradigm shift. Expert Review of Medical Devices 4: 393–404.

    Article  PubMed  Google Scholar 

  • Bordenave, L., P. Menu, and C. Baquey. 2008. Developments towards tissue-engineered, small-diameter arterial substitutes. Expert Review of Medical Devices 5: 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Brouard, M., and Y. Barrandon. 2003. Controlling skin morphogenesis: Hope and despair. Current Opinions in Biotechnology 14: 520–525.

    Article  CAS  Google Scholar 

  • Butler, D.L., J.T. Shearn, and N. Juncosa, et al. 2004. Functional tissue engineering parameters toward designing repair and replacement strategies. Clinical Orthopaedics and Related Research 427(suppl): S190–S199.

    Google Scholar 

  • Butler, D.L., N. Juncosa-Melvin, G.P. Boivin, et al. 2008. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. Journal of Orthopaedic Research 26: 1–9.

    Article  PubMed  Google Scholar 

  • Campbell, R., M. Evans, M. Tucker, B. Quilty, P. Dieppe, and J.L. Donovan. 2001. Why don’t patients do their exercises? Understanding non-compliance with physiotherapy in patients with osteoarthritis of the knee. Journal of Epidemiology and Community Health 55: 132–138.

    Article  CAS  PubMed  Google Scholar 

  • Capi, O., and L. Gepstein. 2006. Myocardial regeneration strategies using human embryonic stem cell-derived cardiomyocytes. Journal of controlled release: Official journal of the Controlled Release Society 116: 211–218.

    CAS  Google Scholar 

  • Caplan, A.I. 2007. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology 213: 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Chim, H., J.T. Schantz, and A.K. Gosain. 2008. Beyond the vernacular: New sources of cells for bone tissue engineering. Plastic and Reconstructive Surgery 122: 755–764.

    Article  CAS  PubMed  Google Scholar 

  • Chung, C., and J.A. Burdick. 2008. Engineering cartilage tissue. Advanced Drug Delivery Reviews 60: 243–262.

    Article  CAS  PubMed  Google Scholar 

  • de Vries, R.B., A. Oerlemans, and L. Trommelmans, et al. 2008. Ethical aspects of tissue engineering: A review. Tissue Engineering Part B Reviews 14. doi:10.1089/ten.teb.2008.0199.

  • Dobzhansky, T. 1973. Nothing in biology makes sense except in the light of evolution. American Biology Teacher 35: 125–129.

    Google Scholar 

  • European Commission. Health and Consumer Protection Directorate-General. 2001. Opinion on the state of the art concerning tissue engineering. Adopted by the scientific committee on medicinal products and medical devices on 1st October 2001. Report No.: Doc. SANCO/SCMPMD/2001/0006Final. Available at: http://europa.eu.int/comm/food/fs/sc/scmp/out37_en.pdf. (accessed August 20, 2008).

  • European Group on Ethics. 2004. Report of the European group on Ethics on the ethical aspects of human tissue engineered products. Brussels; Report No.: 18. http://ec.europa.eu/european_group_ethics/docs/humantissueprod_en.pdf (accessed October 20, 2008).

  • European Parliament. 2007. European Parliament legislative Resolution of 25 April 2007 on the Proposal for a Regulation of the European Parliament and of the Council on Advanced Therapy Medicinal Products and Amending Directive 2001/83/EC and Regulation(EC) No 726/2004 (COM(2005)0567-C6-0401/2005 – 2005/0227(COD) (Codecision procedure: first reading).

  • Farrugia, A. 2006. When do tissues and cells become products? Regulatory oversight of emerging biological therapies. Cell and Tissue Banking 7: 325–335.

    Article  PubMed  Google Scholar 

  • Ferber, D. (1999). Lab-grown organs begin to take shape. Science 284: 422–423, 425.

    Google Scholar 

  • Fernyhough, M.E., G.J. Hausman, L.L. Guan, E. Okine, S.S. Moore, and M.V. Dodson. 2008. Mature adipocytes may be a source of stem cells for tissue engineering. Biochemical and Biophysical Research Communications 368: 455–457.

    Article  CAS  PubMed  Google Scholar 

  • Fiegel, H.C., P.M. Kaufmann, H. Bruns, et al. 2008. Hepatic tissue engineering: From transplantation to customized cell-based liver directed therapies from the laboratory. Journal of Cellular and Molecular Medicine 12: 56–66.

    Article  PubMed  Google Scholar 

  • Fiegel, H.C., C. Lange, U. Kneser, et al. 2006. Fetal and adult liver stem cells for liver regeneration and tissue engineering. Journal of Cellular and Molecular Medicine 10: 577–587.

    Article  CAS  PubMed  Google Scholar 

  • Ford, C.N. 2008. Paradigms and progress in vocal fold restoration. Laryngoscope 118: 1709–1713.

    Article  PubMed  Google Scholar 

  • Frank, C.B., N.G. Shrive, R.S. Boorman, et al. 2004. New perspectives on bioengineering of joint tissues: Joint adaptation creates a moving target for engineering replacement tissues. Annals of Biomedical Engineering 32: 458–465.

    Article  CAS  PubMed  Google Scholar 

  • Gates, C.B., T. Karthikeyan, F. Fu, et al. 2008. Regenerative medicine for the musculoskeletal system based on muscle-derived stem cells. The Journal of the American Academy of Orthopaedic Surgeons 16: 68–76.

    PubMed  Google Scholar 

  • Gerecht-Nir, S., M. Radisic, H. Park, et al. 2006. Biophysical regulation during cardiac development and application to tissue engineering. The International Journal of Developmental Biology 50: 233–243.

    Article  PubMed  Google Scholar 

  • Giannoni, P., A. Crovace, M. Malpeli, et al. 2005. Species variability in the differentiation potential of in vitro-expanded articular chondrocytes restricts predictive studies on cartilage repair using animal models. Tissue Engineering 11: 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Ginis, I., and M.S. Rao. 2003. Toward cell replacement therapy: Promises and caveats. Experimental Neurology 184: 61–77.

    Article  CAS  PubMed  Google Scholar 

  • Gordijn, B. 2004. Medizinische Utopien. Eine ethische Betrachtung. Göttingen: Vandenhoeck & Ruprecht.

    Google Scholar 

  • Grayson, W.L., P.H. Chao, D. Marolt, et al. 2008. Engineering custom-designed osteochondral tissue grafts. Trends in Biotechnology 26: 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock, T., and L. Niklason. 2008. Lymphatic tissue engineering: Progress and prospects. Annals of the New York Academy of Science 1131: 44–49.

    Article  Google Scholar 

  • Hollister, S.J. 2005. Porous scaffold design for tissue engineering. Nature Materials 4: 518–524.

    Article  CAS  PubMed  Google Scholar 

  • Huang, G.T., W. Sonoyama, Y. Liu, et al. 2008. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engineering. Journal of Endodontia 34: 645–651.

    Article  Google Scholar 

  • Hutmacher, D.W., and S. Cool. 2007. Concepts of scaffold-based tissue engineering—the rationale to use solid free-form fabrication techniques. Journal of Cellular and Molecular Medicine 11: 654–669.

    Article  CAS  PubMed  Google Scholar 

  • Ingber, D.E., and M. Levin. 2007. What lies at the interface of regenerative medicine and developmental biology? Development 134: 2541–2547.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., and H. von Recum. 2008. Endothelial stem cells and precursors for tissue engineering: Cell source, differentiation, selection, and application. Tissue Engineering Part B Reviews 14: 133–147.

    Article  CAS  PubMed  Google Scholar 

  • Knight, R.L., H.E. Wilcox, S.A. Korossis, et al. 2008. The use of acellular matrices for the tissue engineering of cardiac valves. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 222: 129–143.

    Google Scholar 

  • Kolf, C.M., E. Cho, and R.S. Tuan. 2007. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arthritis Research and Therapy 9: 204.

    Article  PubMed  CAS  Google Scholar 

  • Korossis, S., F. Bolland, E. Ingham, et al. 2006. Review: Tissue engineering of the urinary bladder: Considering structure-function relationships and the role of mechanotransduction. Tissue Engineering 12: 635–644.

    Article  PubMed  Google Scholar 

  • Krampera, M., G. Pizzolo, G. Aprili, et al. 2006. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39: 678–683.

    Article  CAS  PubMed  Google Scholar 

  • Kretlow, J.D., L. Klouda, and A.G. Mikos. 2007. Injectable matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Review 59: 263–273.

    Article  CAS  Google Scholar 

  • Kuhn, T.S. 1996. The structure of scientific revolutions, 3rd ed. Chicago: The University of Chicago Press.

    Google Scholar 

  • Kwan, M.D., B.J. Slater, D.C. Wan, et al. 2008. Cell-based therapies for skeletal regenerative medicine. Human Molecular Genetics 17: R93–R98.

    Article  CAS  PubMed  Google Scholar 

  • Langer, R., and J.P. Vacanti. 1993. Tissue engineering. Science 260: 920–926.

    Article  CAS  PubMed  Google Scholar 

  • Lilford, R., D. Braunholtz, J. Harris, et al. 2004. Trials in surgery. British Journal of Surgery 91: 6–16.

    Article  CAS  PubMed  Google Scholar 

  • Lysaght, M.J., A. Jaklenec, and E. Deweerd. 2008. Great expectations: Private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Engineering Part A 14(2): 305–315.

    Article  PubMed  Google Scholar 

  • MacNeil, S. 2007. Progress and opportunities for tissue-engineered skin. Nature 445: 874–880.

    Article  CAS  PubMed  Google Scholar 

  • Marris, E. 2008. ‘Paradigm shift’ in: Disputed definitions. Nature 455: 1023–1024.

    Article  CAS  Google Scholar 

  • Mendelson, K., and F.J. Schoen. 2006. Heart valve tissue engineering: Concepts, approaches, progress, and challenges. Annals of Biomedical Engineering 34: 1799–1819.

    Article  PubMed  Google Scholar 

  • Metcalfe, A.D., and M.W. Ferguson. 2008. Skin stem and progenitor cells: Using regeneration as a tissue-engineering strategy. Cellular and Molecular Life Sciences 65: 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Migneco, F., S.J. Hollister, and R.K. Birla. 2008. Tissue-engineered heart valve prostheses: ‘State of the heart’. Regenerative Medicine 3: 399–419.

    Article  CAS  PubMed  Google Scholar 

  • Mikos, A.G., S.W. Herring, P. Ochareon, et al. 2006. Engineering complex tissues. Tissue Engineering 12(12): 3307–3339.

    Article  CAS  PubMed  Google Scholar 

  • Mirensky, T.L., and C.K. Breuer. 2008. The development of tissue-engineered grafts for reconstructive cardiothoracic surgical applications. Pediatric Research 63: 559–568.

    Article  CAS  PubMed  Google Scholar 

  • Moioli, E.K., P.A. Clark, X. Xin, et al. 2007. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Advanced Drug Delivery Review 59: 308–324.

    Article  CAS  Google Scholar 

  • Moreau, J.L., J.F. Caccamese, D.P. Coletti, et al. 2007. Tissue engineering solutions for cleft palates. Journal of Oral and Maxillofacial Surgery 65: 2503–2511.

    Article  PubMed  Google Scholar 

  • Moreno-Borchart, A. 2004. Building organs piece by piece. Accomplishments and future perspectives in tissue engineering. EMBO Reports 5: 1025–1028.

    Article  CAS  PubMed  Google Scholar 

  • Mummery, C. 2004. Stem cell research: Immortality or a healthy old age? European Journal of Endocrinology 151(Suppl 3): U7–U12.

    Article  CAS  PubMed  Google Scholar 

  • Nadal-Ginard, B., D. Torella, and G. Ellison. 2006. Cardiovascular regenerative medicine at the crossroads. Clinical trials of cellular therapy must now be based on reliable experimental data from animals with characteristics similar to human’s. Revista española de cardiología 59: 1175–1189.

    Article  PubMed  Google Scholar 

  • National Institute for Clinical Excellence (NICE). 2005. Technology Appraisal Guidance 89. The use of autologous chondrocyte implantation for the treatment of cartilage defects in knee joints. Review of Technology appraisal 16. Report No.: Technology Appraisal 16. www.nice.org.uk/TA089.

  • Nerem, R.M. 2000. Tissue engineering: Confronting the transplantation crisis. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 214: 95–99.

  • Panetta, N.J., D.M. Gupta, B.J. Slater, et al. 2008. Tissue engineering in cleft palate and other congenital malformations. Pediatric Research 63: 545–551.

    Article  PubMed  Google Scholar 

  • Panici, P.B., F. Bellati, T. Boni, et al. 2007. Vaginoplasty using autologous in vitro cultured vaginal tissue in a patient with Mayer-von-Rokitansky-Kuster-Hauser syndrome. Human Reproduction 22: 2025–2028.

    Article  PubMed  Google Scholar 

  • Passier, R., and C. Mummery. 2003. Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovascular Research 58: 324–335.

    Article  CAS  PubMed  Google Scholar 

  • Passier, R., and C. Mummery. 2005. Cardiomyocyte differentiation from embryonic and adult stem cells. Current Opinions in Biotechnology 16: 498–502.

    Article  CAS  Google Scholar 

  • Petit-Zeman, S. 2001. Regenerative medicine. Nature Biotechnology 19: 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Pham, C., J. Greenwood, H. Cleland, et al. 2007. Bioengineered skin substitutes for the management of burns: A systematic review. Burns 33: 946–957.

    Article  PubMed  Google Scholar 

  • Rotter, N., M. Bucheler, A. Haisch, et al. 2007. Cartilage tissue engineering using resorbable scaffolds. Journal of Tissue Engineering and Regenerative Medicine 1: 411–416.

    Article  CAS  PubMed  Google Scholar 

  • Sales, K.M., H.J. Salacinski, N. Alobaid, et al. 2005. Advancing vascular tissue engineering: The role of stem cell technology. Trends in Biotechnology 23: 461–467.

    Article  CAS  PubMed  Google Scholar 

  • Scott, R.C., D. Crabbe, B. Krynska, et al. 2008. Aiming for the heart: Targeted delivery of drugs to diseased cardiac tissue. Expert Opinion on Drug Delivery 5: 459–470.

    Article  CAS  PubMed  Google Scholar 

  • Shah, A., J. Brugnano, S. Sun, et al. 2008. The development of a tissue-engineered cornea: Biomaterials and culture methods. Pediatric Research 63(5): 535–544.

    Google Scholar 

  • Sievert, K.D., B. Amend, and A. Stenzl. 2007. Tissue Engineering for the Lower Urinary Tract: A Review of a State of the Art Approach. European Urology 52: 1580–1589.

    Article  PubMed  Google Scholar 

  • Simpson, D.G. 2006. Dermal templates and the wound-healing paradigm: The promise of tissue regeneration. Expert Review of Medical Devices 3: 471–484.

    Article  PubMed  Google Scholar 

  • Simpson, D.G., and G.L. Bowlin. 2006. Tissue-engineering scaffolds: Can we re-engineer mother nature? Expert Review of Medical Devices 3: 9–15.

    Article  PubMed  Google Scholar 

  • Slavkin, H.C., and P.M. Bartold. 2006. Challenges and potential in tissue engineering. Periodontology 2000 41: 9–15.

  • Solchaga, L.A., V.M. Goldberg, and A.I. Caplan. 2001. Cartilage regeneration using principles of tissue engineering. Clinical Orthopaedics and Related Research (391 Suppl): S161–S170.

    Google Scholar 

  • Stegemann, J.P., S.N. Kaszuba, and S.L. Rowe. 2007. Review: Advances in vascular tissue engineering using protein-based biomaterials. Tissue Engineering 13: 2601–2613.

    Article  CAS  PubMed  Google Scholar 

  • Stocum, D.L. 1998. Regenerative biology and engineering: Strategies for tissue restoration. Wound Repair and Regeneration. Official publication of the Wound Healing Society [and] the European Tissue Repair Society 6: 276–290.

  • Tataria, M., S.V. Perryman, and K.G. Sylvester. 2006. Stem cells: Tissue regeneration and cancer. Seminars in Pediatric Surgery 15: 284–292.

    Article  PubMed  Google Scholar 

  • Tawqeer, R., H. Salacinski, G. Hamilton, et al. 2004. The use of animal models in developing the discipline of cardiovascular tissue engineering: A review. Biomaterials 25: 1627–1637.

    Article  CAS  Google Scholar 

  • Trommelmans, L., J. Selling, and K Dierickx. 2007. Ethical issues in tissue engineering, European ethical-legal papers n°7. Leuven: Centre for biomedical ethics and law) 2007. www.cbmer.be.

  • Trommelmans, L., J. Selling, and K. Dierickx. 2008a. Ethical reflections on clinical trials with human tissue engineered products. Journal of Medical Ethics 34: e1.

    Article  CAS  PubMed  Google Scholar 

  • Trommelmans, L., J. Selling, and K. Dierickx. 2008b. Informing participants in clinical trials with ex vivo human tissue-engineered products: What to tell and how to tell it? Journal of Tissue Engineering and Regenerative Medicine 2: 236–241.

    Article  PubMed  Google Scholar 

  • U.S. Department of Health and Human Services. 2006. 2020: A new vision—a future for regenerative medicine. www.hhs.gov/reference/newfuture.shtml (accessed October 20, 2008).

  • Vunjak-Novakovic, G., I. Martin, B. Obradovic, et al. 1999. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaedic Research 17: 130–138.

    Article  CAS  PubMed  Google Scholar 

  • Wendt, D., M. Jakob, and I. Martin. 2005. Bioreactor-based engineering of osteochondral grafts: From model systems to tissue manufacturing. Journal of Bioscience and Bioengineering 100: 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Williams, D. 2006a. A registry for tissue engineering clinical trials. Medical Device Technology 17: 8–10.

    Google Scholar 

  • Williams, D.F. 2006b. To engineer is to create: The link between engineering and regeneration. Trends in Biotechnology 24: 4–8.

    Article  CAS  PubMed  Google Scholar 

  • Williams, D.F. 2006c. Tissue engineering: The multidisciplinary epitome of hope and despair. In Studies in multidisciplinarity, vol. 3, ed. R. Paton, and L. McNamara, 483–524. Amsterdam: Elsevier.

    Google Scholar 

  • Williams, D. 2007. Cages and chondrocytes: Techniques to replace and regenerate the troublesome intervertebral disc. Medical Device Technology 18: 8–10.

    Google Scholar 

  • Williams, D.F. 2008. On the mechanisms of biocompatibility. Biomaterials 29: 2941–2953.

    Article  CAS  PubMed  Google Scholar 

  • Wood, J., M. Malek, F. Frassica, et al. 2006. Autologous cultured chondrocytes: Adverse events reported to the United States food and drug administration. The Journal of Bone and Joint Surgery American volume 88: 503–507.

    Article  Google Scholar 

  • Yang, J., M. Yamato, K. Nishida, et al. 2006. Cell delivery in regenerative medicine: The cell sheet engineering approach. Journal of Controlled Release: Official Journal of the Controlled Release Society 116: 193–203.

    CAS  Google Scholar 

  • Zhang, Y., H.S. An, C. Tannoury, et al. 2008. Biological treatment for degenerative disc disease: Implications for the field of physical medicine and rehabilitation. American Journal of Physical Medicine & Rehabilitation/Association of Academic Physiatrists 87: 694–702.

    Google Scholar 

  • Zimmermann, W.H., M. Didie, S. Doker, et al. 2006. Heart muscle engineering: An update on cardiac muscle replacement therapy. Cardiovascular Research 71: 419–429.

    Article  CAS  PubMed  Google Scholar 

  • Zuk, P.A. 2008. Tissue engineering craniofacial defects with adult stem cells? Are we ready yet? Pediatric Research 63: 478–486.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research for this contribution was supported by the STEPS-project, funded by the European Commission, FP6-50046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leen Trommelmans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trommelmans, L., Selling, J. & Dierickx, K. Is tissue engineering a new paradigm in medicine? Consequences for the ethical evaluation of tissue engineering research. Med Health Care and Philos 12, 459–467 (2009). https://doi.org/10.1007/s11019-009-9192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11019-009-9192-0

Keywords

Navigation