Skip to main content
Log in

Thermodynamic properties of the trans-1,3,3,3-tetrafluoropropene refrigerant: a method for constructing the equation of state and the tabulated data

  • Published:
Measurement Techniques Aims and scope

Abstract

This study discusses the transition toward the use of environmentally friendly refrigerants in low-temperature technology. It also considers a new environmentally friendly fourth-generation refrigerant trans‑1,3,3,3-tetrafluoropropene R1234ze(E) as an alternative to the R134a refrigerant common in chillers and heat pumps, as well as the R22 refrigerant in air conditioning systems. A technique has been developed for constructing a unified fundamental equation on the states of liquid and gas for trans‑1,3,3,3-tetrafluoropropene. Around the critical point, the proposed fundamental equation satisfies the requirements of the scale theory for asymmetric systems, and in the region of a rarefied gas, it is reduced to the virial equation of state. Based on this fundamental equation, tables of standard reference data on pressure, density, enthalpy, isobaric and isochoric heat capacities, entropy, heat of vaporization, and sound velocity of trans‑1,3,3,3-tetrafluoropropene in the region of state parameters in the temperature ranges of 169–420 K and pressure of 0.1–100 MPa were calculated. Several statistical characteristics have been calculated, namely, absolute mean deviation, systematic deviation, standard deviation, and root mean square deviation, characterizing the accuracy of the proposed fundamental equation in describing the experimental values of the equilibrium properties obtained in recognized international thermophysical centers. Evidently, the values of these statistical characteristics are significantly lesser than those of the corresponding characteristics of the international fundamental equations of state, provided in the literature, when describing the thermal and caloric experimental data of trans‑1,3,3,3-tetrafluoropropene. The estimated expanded uncertainties of the tabulated data based on the proposed fundamental equation were 0.26% for density, 0.57% for pressure, 1.7% and 1.2% for isochoric and isobaric heat capacities, respectively, and 0.38% for sound velocity. The results suggest that the proposed unified fundamental equation of state adequately conveys the thermodynamic characteristics of trans‑1,3,3,3-tetrafluoropropene over the specified range of temperatures and pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Decree of the Government of the Russian Federation dated March 25, 2020 No. 333 “On the adoption by the Russian Federation of amendments to the Montreal Protocol on Substances that Deplete the Ozone Layer.”.

  2. Ghost 34100.3–2017/ISO/IEC Guide 98-3:2008. Measurement Uncertainty. Part 3: Guidance on Expressing Measurement Uncertainty.

References

  1. Thol, M., Lemmon, E.W.: Int J Thermophys 37, 28 (2016). https://doi.org/10.1007/s10765-016-2040-6

    Article  ADS  Google Scholar 

  2. Astina, I.M., Budiarso, G., Harrison, R.: Fluid Phase. Equilib. 531, 112921 (2021). https://doi.org/10.1016/j.fluid.2020.112921

    Article  Google Scholar 

  3. Brown, J.S., Di Nicola, G., Zilio, C., Fedele, L., Bobbo, S., Polonara, F.: J. Chem. Eng. Data 57, 3710–3720 (2012). https://doi.org/10.1021/je300945r

    Article  Google Scholar 

  4. Klomfar, J., Souckova, M., Patek, J.: J. Chem. Eng. Data 57, 3270–3277 (2012). https://doi.org/10.1021/je3008974

    Article  Google Scholar 

  5. McLinden, M.J.O., Thol, M., Lemmon, E.W.: Thermodynamic properties of trans‑1,3,3,3-tetrafluoropropene [R1234ze(E)]: measurements of density and vapor pressure and a comprehensive equation of state. Int. Refrig. Air Cond. Conf. 12–15(2189), 1–8 (2010)

    Google Scholar 

  6. Qiu, G., Meng, X., Wu, J.: J. Chem. Thermodyn. 60, 150–158 (2013). https://doi.org/10.1016/j.jct.2013.01.006

    Article  Google Scholar 

  7. Tanaka, K., Takahashi, G., Higashi, Y.: J. Chem. Eng. Data 55, 2169–2172 (2010). https://doi.org/10.1021/je900756g

    Article  Google Scholar 

  8. Tanaka, K., Higashi, Y.: J. Chem. Eng. Data 55, 5164–5168 (2010). https://doi.org/10.1021/je100707s

    Article  Google Scholar 

  9. Yin, J., Zhou, Y., Zhao, G., Ma, S.: Fluid Phase. Equilib, vol. 460., pp. 69–74 (2018). https://doi.org/10.1016/j.fluid.2017.12.030

    Book  Google Scholar 

  10. Zhang, H., Gong, M., Li, H., Guo, H., Dong, X., Wu, J.: Fluid Phase. Equilib, vol. 408., pp. 232–239 (2016). https://doi.org/10.1016/j.fluid.2015.09.010

    Book  Google Scholar 

  11. Wang, L., Song, J., Sheng, B., Dong, X., Zhao, Y., Zhong, Q., Yan, H., Gong, M.: J. Chem. Thermodyn. 141, 105936 (2020). https://doi.org/10.1016/j.jct.2019.105936

    Article  Google Scholar 

  12. Al Ghafri, S.Z.S., Rowland, D., Akhfash, M.: Int. J. Refrig. 98, 249–260 (2019). https://doi.org/10.1016/j.ijrefrig.2018.10.027

    Article  Google Scholar 

  13. Gao, N., Chen, G., Li, R., Wang, Y., He, Y., Yang, B.: J. Therm. Anal. Calorim. 122, 1469–1476 (2015). https://doi.org/10.1007/s10973-015-4837-0

    Article  Google Scholar 

  14. Kagawa, N., Matsuguchi, A., Watanabe, K.: Air Cond. Eng. Trans. Jpn. Soc. Refrig. 28, 71–76 (2011). https://doi.org/10.11322/tjsrae.28.71

    Article  Google Scholar 

  15. Liu, Y., Zhao, X., He, H., Wang, R.: Journal of Chemical & Engineering. Data 63, 113–118 (2018). https://doi.org/10.1021/acs.jced.7b00713

    Article  Google Scholar 

  16. Kano, Y., Kayukawa, Y., Fujii, K.: J. Chem. Eng. Data 58, 2966–2969 (2013). https://doi.org/10.1021/je4004564

    Article  Google Scholar 

  17. Perkins, R.A., McLinden, M.O.: J. Chem. Thermodyn. 91, 43–61 (2015). https://doi.org/10.1016/j.jct.2015.07.005

    Article  Google Scholar 

  18. Chen, Q., Gao, R., Guan, X., Du, L., Chen, G., Tang, L.: J. Chem. Eng. Data 65, 4230–4235 (2020). https://doi.org/10.1021/acs.jced.0c00219

    Article  Google Scholar 

  19. Qi, Y., Yang, H., Zhang, C.: J. Chem. Thermodyn. 135, 68–74 (2019). https://doi.org/10.1016/j.jct.2019.03.016

    Article  Google Scholar 

  20. Yang, T., Hu, X., Meng, X., Wu, J.: J. Chem. Thermodyn. 150, 106222 (2020). https://doi.org/10.1016/j.jct.2020.106222

    Article  Google Scholar 

  21. Gong, M., Zhang, H., Li, H., Zhong, Q., Dong, X., Shen, J., Wu, J.: Int. J. Refrig., 64, 168–175 (2016). https://doi.org/10.10167j.ijrefrig.2016.01.007

  22. Tanaka, K.: J. Chem. Eng. Data 61, 1645–1648 (2016). https://doi.org/10.1021/acs.jced.5b01039

    Article  Google Scholar 

  23. Ye, G., Zh, Y.F.G., Ni, H., Zhuang, Y., Han, X., Chen, G.: J. Chem. Eng. Data 66, 1741–1753 (2021). https://doi.org/10.1021/acs.jced.0c01033

    Article  Google Scholar 

  24. Higashi, Y., Tanaka, K.: J. Chem. Eng. Data 55, 1594–1597 (2010). https://doi.org/10.1021/je900696z

    Article  Google Scholar 

  25. An, B., Yang, F., Yang, K., Duan, Y.: Zh. Yang j. Chem. Eng. Data 63, 2075–2080 (2018). https://doi.org/10.1021/acs.jced.8b00090

    Article  Google Scholar 

  26. Zhang, K., Zh, H.C.Y., Duan, Y.: J. Chem. Thermodyn. 149, 106160 (2020). https://doi.org/10.1016/j.jct.2020.106160

    Article  Google Scholar 

  27. Pierantozzi, M., Tomassetti, S., Di Nicola, G.: Appl. Sci. 10, 2014 (2020). https://doi.org/10.3390/app10062014

    Article  Google Scholar 

  28. Devecioğlu, A.G., Orug, V.: Environ.-Benign Energ Sol. Energ Technol, Green, pp. 87–96 (2020). https://doi.org/10.1007/978-3-030-20637-6_4

    Book  Google Scholar 

  29. Ma, Sh : Modern Theory of Critical Phenomena. Roudedge, vol. 298. New York (1980)

    Google Scholar 

  30. Rykov, S.V., Kudryavtseva, I.V., Phys, J.: Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/2057/1/012112

    Article  Google Scholar 

  31. Rykov, V.A.: J. Eng. Phys. 48, 476–481 (1985). https://doi.org/10.1007/BF00872077

    Article  Google Scholar 

  32. Rykov, S.V., Kudryavtseva, I.V., Rykov, V.A.: J. Phys.: Conf. Ser. (1565). https://doi.org/10.1088/1742-6596/1565/1/012038

  33. Kolobaev, V.A., Rykov, S.V., Kudryavtseva, I.V.: Meas. Techn., 65. No 5, 330–338 (2022). https://doi.org/10.1007/s11018-022-02084-7

    Article  Google Scholar 

  34. Rykov, S.V., Kudryavtseva, I.V., Rykov, V.A., Rykov, S.A., Konyaev, D.V.: Analysis of methods for describing the thermodynamic surface of carbon dioxide. Vestn. Mezhdunar. Akad. Kholoda (2023). https://doi.org/10.17586/1606-4313-2023-22-2-82-88

    Article  Google Scholar 

  35. Rykov, S.V.: The fundamental equation of state considering asymmetry of fluid. Nauchn-tekhnich. Vestn. Povolzh’ya (1), 33–36 (2014). https://elibrary.ru/schqpb

  36. Rykov, V.A., Varfolomeeva, G.B.: J. Eng. Phys. 48, 341–345 (1985). https://doi.org/10.1007/BF00878203

    Article  Google Scholar 

  37. Kozlov, A.D., Lysenkov, V.F., Popov, P.V., Rykov, V.A.: J. Eng. Phys. Thermophys. 62(6), 611–617 (1992). https://doi.org/10.1007/BF00851887

    Article  Google Scholar 

  38. Kolobaev, V.A., Rykov, S.V., Kudryavtseva, I.V., Ustyuzhanin, E.E., Popov, P.V., Rykov, V.A., Kozlov, A.D.: Meas. Techn., 65. No 11, 793–802 (2023). https://doi.org/10.1007/s11018-023-02153-5

    Article  Google Scholar 

  39. Benedek, G.B.: In polarization matie et payonnement, livre de Jubile en l’honneur du proffesor A. Kastler (In French), Presses Universitaires de Paris. Paris (1968)

    Google Scholar 

  40. Rykov, S.V., Kudryavtseva, I.V.: Fund. Res. No 9(8), 1687–1692 (2014)

    Google Scholar 

  41. Widom, B.: J. Chem. Phys. 43, 255–262 (1965). https://doi.org/10.1063/11696618

    Article  Google Scholar 

  42. Kudryavtseva, I.V., Rykov, S.V.: Russ. J. Phys. Chem. A 90, 1493–1495 (2016). https://doi.org/10.1134/S0036024416070153

    Article  Google Scholar 

  43. Rykov, S.V., Sverdlov, A.V., Rykov, V.A., Kudryavtseva, I.V., Ustyuzhanin, E.E.: Method for constructing the equation of state of liquid and gas based on the Migdal phenomenological theory and the Benedek hypothesis. Vestn. Mezhdunar. Akad. Kholoda (2020). https://doi.org/10.17586/1606-4313-2020-19-3-83-90

    Article  Google Scholar 

  44. Bezverkhii, P.P., Dutova, O.S.: Thermophys. Aeromech. 30, 137–151 (2023). https://doi.org/10.1134/S086986432301016X

    Article  ADS  Google Scholar 

  45. Rykov, S.V., Kudryavtseva, I.V., Rykov, V.A., Konyaev, D.V.: Saturated vapor pressure of a series of hydrofluoroolefins. Vestn. Mezhdunar. Akad. Kholoda (2022). https://doi.org/10.17586/1606-4313-2022-21-4-76-83

    Article  Google Scholar 

  46. Kolobaev, V.A., Rykov, S.V., Kudryavtseva, I.V., Ustyuzhanin, E.E., Rykov, V.A., Sverdlov, A.V., Kozlov, A.D.: Meas. Techn., 64. No 2, 86–93 (2021). https://doi.org/10.1007/s11018-021-01901-9

    Article  Google Scholar 

  47. Rykov, S.V., Kudryavtseva, I.V., Rykov, V.A., Popov, P.V., Solomichev, R.I., Rykov, S.A.: Description of the thermodynamic surface of argon within the renormalization group theory for an asymmetric model. Vestn. Mezhdunar. Akad. Kholoda (2023). https://doi.org/10.17586/1606-4313-2023-22-3-61-67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rykov.

Ethics declarations

Conflict of interest

S.V. Rykov, P.V. Popov, I.V. Kudryavtseva, and V.A. Rykov declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Translated from Izmeritel’naya Tekhnika, No. 10, pp. 32–40, October, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rykov, S.V., Popov, P.V., Kudryavtseva, I.V. et al. Thermodynamic properties of the trans-1,3,3,3-tetrafluoropropene refrigerant: a method for constructing the equation of state and the tabulated data. Meas Tech 66, 765–775 (2024). https://doi.org/10.1007/s11018-024-02290-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-024-02290-5

Keywords

Navigation