Skip to main content

Advertisement

Log in

Thermodynamic Properties of R1233zd(E) Refrigerant: Method for Constructing the Fundamental Equation of State and Tabulated Data

  • Published:
Measurement Techniques Aims and scope

Abstract

The use of environmentally friendly refrigerants, such as R1233zd(E), in low-temperature technology as an alternative to the currently used refrigerants R245fa, R134a, R123 is considered. Substance R1233zd(E) - trans-1-chloro-3,3,3-trifluoro-1-propene - refers to fluorinated hydrocarbon compounds. To calculate the equilibrium characteristics (density, entropy, etc.) of this substance, a unified fundamental equation of state is proposed that satisfies a number of requirements: the asymmetric nature of the behavior of a real fluid relative to the critical isochore is taken into account in accordance with modern physics of critical phenomena; the transition of this equation to the virial equation of state in the rarefied gas region is realized; in a wide vicinity of the critical point is consistent with the Berestov scaling equation. Based on the proposed equation of state in the temperature range 195.15–450 K and pressure 0.1–100 MPa for R1233zd(E), thermodynamic tables of standard reference data were calculated in the single-phase region and on the saturation line, including density, entropy and enthalpy, sound speed , isochoric and isobaric heat capacities, as well as the heat of vaporization. In accordance with GOST 34100.3-2017/ISO/IEC Guide 98-3:2008 and the international methodology recommended for assessing the uncertainty of tabulated data, the uncertainties of the characteristic values in the specified standard tables were evaluated. A comparative analysis of the characteristics of R1233zd(E) calculated from the proposed equation of state with experimental and published data is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. V. Nair, Int. J. Refrig., 122, 156–170 (2021), https://doi.org/10.1016/j.ijrefrig.2020.10.039.

    Article  Google Scholar 

  2. M. E. Mondéjar, M. O. McLinden, and E. W. Lemmon, J. Chem. Eng. Data, 60, 2477–2489 (2015), https://doi.org/10.1021/acs.jced.5b00348.

    Article  Google Scholar 

  3. G. Di Nicola, L. Fedele, J. S. Brown, et al., J. Chem. Eng. Data, 62, 2496–2500 (2017), https://doi.org/10.1021/acs.jced.6b00916.

    Article  Google Scholar 

  4. R. J. Hulse, R. S. Basu, R. R. Singh, and R. H. P. Thomas, J. Chem. Eng. Data, 57, 3581–3586 (2012), https://doi.org/10.1021/je300776s.

    Article  Google Scholar 

  5. K. Tanaka, Trans. Jpn. Soc. Refrig. Air Cond. Eng., 33, 105–111 (2016), https://doi.org/10.11322/tjsrae.15-48_OA.

  6. Sh. Li, F. Yang, K. Zhang, et al., J. Chem. Eng. Data, 64, 2947–2954 (2019), https://doi.org/10.1021/acs.jced.9b00001.

    Article  Google Scholar 

  7. Yin J., Ke J., Zhao G., and Ma S., Int. J. Refrig., 121, 253–257 (2021), https://doi.org/10.1016/j.ijrefrig.2020.09.010.

    Article  Google Scholar 

  8. N. Sakoda, Y. Higashi, and R. Akasaka, J. Chem. Eng. Data, 65, 4285–4289 (2020), https://doi.org/10.1021/acs.jced.0c00239.

    Article  Google Scholar 

  9. K. Tanaka, J. Chem. Eng. Data, 61, 3570–3572 (2016), https://doi.org/10.1021/acs.jced.6b00502.

    Article  Google Scholar 

  10. L. Fedele, M. Pierantozzi, G. Di Nicola, et al., J. Chem. Eng. Data, 63, 225–232 (2018), https://doi.org/10.1021/acs.jced.7b00841.

    Article  Google Scholar 

  11. R. Romeo, P. A. Giuliano Albo, S. Lago, and J. S. Brown, Int. J. Refrig., 79, 176–182 (2017), https://doi.org/10.1016/j.ijrefrig.2017.04.003.

    Article  Google Scholar 

  12. S. Lago, P. A. Giuliano Albo, J. S. Brown, and M. Bertinetti, J.Chem. Eng. Data, 63, 4039–4045 (2018), https://doi.org/10.1021/acs.jced.8b00427.

    Article  Google Scholar 

  13. Y. Liu and X. Zhao, Int. J. Refrig., 86, 127–132 (2018), https://doi.org/10.1016/j.ijrefrig.2017.11.015.

    Article  Google Scholar 

  14. A. T. Berestov, “Equation of state in the critical region with inclusion of non-asymptotic terms,” Sov. Phys. JETP, 45, No. 1, 184–187 (1977).

    MathSciNet  Google Scholar 

  15. V. A. Rykov, S. V. Rykov, I. V. Kudryavtseva, and A. V. Sverdlov, J. Phys.: Conf. Ser., 891, 012334 (2017), https://doi.org/10.1088/1742-6596/891/1/012334.

    Article  Google Scholar 

  16. I. V. Kudryavtseva, V. A. Rykov, and S. V. Rykov, J. Phys.: Conf. Ser., 1385, 012009 (2019), https://doi.org/10.1088/1742-6596/1385/1/012009.

    Article  Google Scholar 

  17. V. A. Kolobaev, S. V. Rykov, I. V. Kudryavtseva, et al., “Technique for constructing the equation of state and thermodynamic tables for a new generation refrigerant,” Izmer. Tekhn., No. 2, 9–15 (2021), https://doi.org/10.32446/0368-1025it.2021-2-9-15;Measur. Techn., 64, No. 2, 86–93 (2021), https://doi.org/10.1007/s11018-021-01901-9].

  18. S. V. Rykov and I. V. Kudryavtseva., J. Phys.: Conf. Ser., 2057, 012112 (2021), https://doi.org/10.1088/1742-6596/2057/1/012112.

  19. A. D. Kozlov, V. F. Lysenkov, P. V. Popov, and V. A. Rykov, J. Eng. Phys. Thermophys., 62, No. 6, 611–617 (1992), https://doi.org/10.1007/BF00851887.

    Article  Google Scholar 

  20. I. V. Kudryavtseva, V. A. Rykov, S. V. Rykov, and E. E. Ustyuzhanin, J. Phys.: Conf. Ser., 946, 012118 (2018), https://doi.org/10.1088/1742-6596/946/1/012118.

    Article  Google Scholar 

  21. S. V. Rykov, I. V. Kudryavtseva, and V. A. Rykov, J. Phys.: Conf. Ser., 1565, 012038 (2020), https://doi.org/10.1088/1742-6596/1565/1/012038.

    Article  Google Scholar 

  22. Sh. Ma, Modern Theory of Critical Phenomena, Addison-Wesley (1976).

  23. G. B. Benedek, “Polarization matiere et rayonnement,” Volume Jubilaire en l’Honneur d’Alfred Kastler, Presses Universitaires de Paris, Paris (1968), p. 71.

  24. S. V. Rykov, “The fundamental equation of state considering asymmetry of fluid,” Sci. Techn. Volga Reg. Bull., No. 1, 33–36 (2014).

    Google Scholar 

  25. V. A. Agayan, M. A. Anisimov, and J. V. Sengers, Phys. Rev. E, 64, 026125 (2001), https://doi.org/10.1103/PhysRevE.64.026125.

    Article  Google Scholar 

  26. S. V. Rykov, I. V. Kudryavtseva, V. A. Rykov, et al., J. Phys. Conf. Ser., 1147, 012017 (2019), https://doi.org/10.1088/1742-6596/1147/1/012017.

    Article  Google Scholar 

  27. R. Mares, O. Profous, and O. Sifner, Int. J. Thermophys., 20, No. 3, 933–942 (1999), https://doi.org/10.1023/A:1022647605881.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolobaev.

Additional information

Translated from Izmerit. Tekhn., No. 5, pp. 22-28, May, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolobaev, V.A., Rykov, S.V., Kudryavtseva, I.V. et al. Thermodynamic Properties of R1233zd(E) Refrigerant: Method for Constructing the Fundamental Equation of State and Tabulated Data. Meas Tech 65, 330–338 (2022). https://doi.org/10.1007/s11018-022-02084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-022-02084-7

Keywords

Navigation