Skip to main content

Advertisement

Log in

Unified Fundamental Equation of State of Argon: Construction Technique Within the Framework of Scaling Theory and Tables of Standard Reference Data

  • GENERAL QUESTIONS OF METROLOGY AND MEASUREMENT TECHNOLOGY
  • Published:
Measurement Techniques Aims and scope

A technique has been developed for constructing a unified fundamental equation of state of an individual substance for a wide range of state parameters. The technique is based on the Benedek hypothesis and the method of pseudocritical points, which are based on the assertion that the isochoric and isobaric heat capacities, the isothermal compressibility coefficient, and the speed of sound in the vicinity of the critical point on the critical and noncritical isochores are described by power-law dependences with the same critical indices. A unified fundamental equation of state of argon has been created that satisfies the requirements of the theory of scaling of critical phenomena, transforms into a virial equation of state in the gas region, satisfactorily conveys experimental data on density, isochoric and isobaric heat capacities, and sound speed within the uncertainty of the initial experimental data in the single-phase region in a wide range temperatures and pressures, on the phase equilibrium line in the range from the triple point to the critical point and in the near-critical region. On the basis of a unified fundamental equation of state, tables of standard reference data for argon were developed and certified in the temperature range of 83.806– 1200 K and pressures of 0.1–1000 MPa, and a statistical estimate of the accuracy of the tables was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. SDS tables. GSSSD 179-96. Argon liquid and gaseous. Thermodynamic properties, coefficients of dynamic viscosity and thermal conductivity at temperatures of 85 ... 1300 K and pressures of 0.1 ... 1000 MPa.

  2. GOST 34100.3-2017/ISO/IEC Guide 98-3:2008. Measurement uncertainty. Part 3. Guidance on the expression of measurement uncertainty.

  3. GSSSD 396-2022. Argon. Density, enthalpy, isobaric and isochoric heat capacities, entropy and speed of sound in the temperature range from 83.806 K and pressures from 0.1 to 1000 MPa, including the critical region.

References

  1. R. Gilgen, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn., 26, 383–398 (1994), https://doi.org/10.1006/jcht.1994.1048.

    Article  Google Scholar 

  2. J. Thoen, E. Vangeel, and W. Van Dael, Physica, 45, 339–356 (1969), https://doi.org/10.1016/0031-8914(69)90261-4.

    Article  ADS  Google Scholar 

  3. H. M. Roder, R. A. Perkins, and C. A. Nieto de Castro, Int. J. Thermophys., 10, 1141–1164 (1989), https://doi.org/10.1007/BF00500568.

    Article  ADS  Google Scholar 

  4. R. A. Perkins, D. G. Friend, H. M. Order, and C. A. Nieto de Castro, Int. J. Thermophys., 12, 965–984 (1991), https://doi.org/10.1007/BF00503513.

    Article  ADS  Google Scholar 

  5. J. Klimeck, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn., 30, 1571–1588 (1998), https://doi.org/10.1006/jcht.1998.0421.

    Article  Google Scholar 

  6. R. Gilgen, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn., 26, 399–413 (1994), https://doi.org/10.1006/jcht.1994.1049.

    Article  Google Scholar 

  7. A. Michels, Hub Wijker, and H. K. Wijker, Physica, 15, 627–633 (1949), https://doi.org/10.1016/0031-8914(49)90119-6.

  8. A. Michels, J. M. Levelt, and W. de Graaff, Physica, 24, 659–671 (1958), https://doi.org/10.1016/S0031-8914(58)80080-4.

    Article  ADS  Google Scholar 

  9. C. Gladun, Cryogenics, 11, 205–209 (1971), https://doi.org/10.1016/0011-2275(71)90312-2.

    Article  ADS  Google Scholar 

  10. M. A. Anisimov, B. A. Kovalchuk, V. A. Rabinovich, and V. A. Smirnov, Experimental study of the isochoric heat capacity of argon in a wide range of state parameters, including the critical region, Teplofiz. Svojstva Veshchestv Materialov, 8, 237–245 (1975).

    Google Scholar 

  11. M. A. Anisimov, B. A. Kovalchuk, V. A. Rabinovich, and V. A. Smirnov, Results of an experimental study of the heat capacity Cv of argon in single-phase and two-phase regions, Teplofiz. Svojstva Veshchestv Materialov, 12, 86–106 (1978).

    Google Scholar 

  12. A. V. Voronel', V. C. Gorbunova, V. A. Smirnov, N. G. Shmakov, and V. V. Shchekochikhina, Thermodynamic quantities for pure liquids and the applicability of the asymptotic laws near the critical point, Sov. Phys. JETP, 36, No. 3, 505–513 (1973).

    ADS  Google Scholar 

  13. D. H. Bowman, R. A. Aziz, and C. C. Lim, Can. J. Phys., 47, 267–273 (1969).

    Article  ADS  Google Scholar 

  14. O. B. Verbeke, V. Jansoone, R. Gielen, and J. De Boelpaep, J. Phys. Chem., 73, 4076–4085 (1969), https://doi.org/10.1021/j100846a008.

    Article  Google Scholar 

  15. W. Wagner, Cryogenics, 13, 470–482 (1973), https://doi.org/10.1016/0011-2275(73)90003-9.

    Article  ADS  Google Scholar 

  16. S. N. Biswas, N. J. Trappeniers, P. J. Kortbeek, and C. A. ten Seldam, Rev. Sci. Instrum., 59, 470–476 (1988), https://doi.org/10.1063/1.1139863.

    Article  ADS  Google Scholar 

  17. J. Thoen, E. Vangeel, and W. Van Dael, Physica, 52, 205–224 (1971), https://doi.org/10.1016/0031-8914(71)90195-9.

    Article  ADS  Google Scholar 

  18. A. F. Estrada-Alexanders and J. P. M. Trusler, Int. J. Thermophys., 17, 1325–1347 (1996), https://doi.org/10.1007/BF01438673.

    Article  ADS  Google Scholar 

  19. E. C. Morris and R. G. Wylie, J. Chem. Phys., 73, 1359–1367 (1980), https://doi.org/10.1063/1.440252.

    Article  ADS  Google Scholar 

  20. S. L. Robertson, S. E. Babb, and G. J. Scott, J. Chem. Phys., 50, 2160–2166 (1969), https://doi.org/10.1063/1.1671345.

    Article  ADS  Google Scholar 

  21. A. Lecocq, "Determination Experimentale des Equations d'etat de L'Argon jusqua 1000°C et 1000 kg/cm2," J. Recherches Centre National Recherche Scientific, 55, 55–82 (1960). (In Fr.)

    Google Scholar 

  22. M. Baba, L. Dordain, Y.-Y. Coxam, and J.-P. Grolier, "Calorimetric measurements of heat capacities and heats of mixing in the range 300–570 K and up to 30 MPa," Indian J. Technol., 30, 553–558 (1992).

    Google Scholar 

  23. A. F. Estrada-Alexanders and J. P. M. Trusler, J. Chem. Thermodyn., 27, 1075–1089 (1995), https://doi.org/10.1006/jcht.1995.0113.

    Article  Google Scholar 

  24. M. B. Ewing and J. P. M. Trusler., Physica A, 184, 415–436 (1992), https://doi.org/10.1016/0378-4371(92)90314-G.

  25. M. B. Ewing and A. R. H. Goodwin, J. Chem. Thermodyn., 24, 531–547 (1992), https://doi.org/10.1016/S0021-9614(05)80123-5.

    Article  Google Scholar 

  26. M. B. Ewing, A. A. Owusu, and J. P. M. Trusler, Physica A, 156, 899–908 (1989), https://doi.org/10.1016/0378-4371(89)90026-5.

    Article  ADS  Google Scholar 

  27. S. S. Lestz, J. Chem. Phys., 38, 2830–2834 (1963), https://doi.org/10.1063/1.1733609.

    Article  ADS  Google Scholar 

  28. C. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data, 28, 779–849 (1999), https://doi.org/10.1063/1.556037.

    Article  ADS  Google Scholar 

  29. R. B. Stewart and R. T. Jacobsen, J. Phys. Chem. Ref. Data, 18, 639–799 (1989), https://doi.org/10.1063/1.555829.

    Article  ADS  Google Scholar 

  30. A. Rizi and A. Abbaci, J. Mol. Liq., 171, 64–70 (2012), https://doi.org/10.1016/j.molliq.2012.04.010.

    Article  Google Scholar 

  31. S. V. Rykov, I. V. Kudryavtseva, and V. A. Rykov, J. Phys.: Conf. Ser., 1385, 012014 (2019), https://doi.org/10.1088/1742-6596/1385/1/012014.

  32. V. A. Rykov, J. Eng. Phys. Thermophys., 48, No. 4, 476–481 (1995), https://doi.org/10.1007/BF00872077.

    Article  Google Scholar 

  33. V. A. Rykov, S. V. Rykov, I. V. Kudryavtseva, and A. V. Sverdlov, J. Phys.: Conf. Ser., 891, 012334 (2017), https://doi.org/10.1088/1742-6596/891/1/012334.

  34. G. B. Benedek, Polarisation Matiere et Rayonnement — Volume Jubilaire en l'Honneur d'Alfred Kastler, Presses Uni- versitaires de Paris, Paris (1968), p. 71.

  35. I. V. Kudryavtseva, V. A. Rykov, S. V., Rykov, and E. E. Ustyuzhanin, J. Phys. Conf. Ser., 946, 012118 (2018), https://doi.org/10.1088/1742-6596/946/1/012118.

  36. A. D. Kozlov, V. F. Lysenkov, P. V. Popov, and V. A. Rykov, J. Eng. Phys. Thermophys., 62, 611–617 (1992), https://doi.org/10.1007/BF00851887.

    Article  Google Scholar 

  37. I. V. Kudryavtseva and S. V. Rykov, Russ. J. Phys. Chem. A, 90, No. 7, 1493–1495 (2016), https://doi.org/10.1134/S0036024416070153.

    Article  Google Scholar 

  38. S. V. Rykov, I. V. Kudryavtseva, V. A. Rykov, and E. E. Ustyuzhanin, J. Phys. Conf. Ser., 2057, 012113 (2021), https://doi.org/10.1088/1742-6596/2057/1/012113.

  39. V. A. Kolobaev, S. V. Rykov, I. V. Kudryavtseva, et al., Meas. Tech., 64, No. 2, 86–93 (2021), https://doi.org/10.1007/s11018-021-01901-9.

    Article  Google Scholar 

  40. V. P. Skripov, E. N. Sinicin, P. A. Pavlov, et. al., Teplofizicheskie svojstva zhidkostej v metastabil'nom sostoyanii, Atomizdat Publ., Moscow (1980), 208 p.

    Google Scholar 

  41. V. A. Kolobaev, S. V. Rykov, I. V. Kudryavtseva, et al., Thermodynamic properties of R1233zd(E) refrigerant: a technique for constructing the fundamental equation of state and tabulated data, Izmerit. Tekh., No. 5, 22–28 (2022), https://doi.org/10.32446/0368-1025it.2022-5-22-28.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolobaev.

Additional information

Translated from Izmeritel'naya Tekhnika, No. 11, pp. 9–16, October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolobaev, V.A., Rykov, S.V., Kudryavtseva, I.V. et al. Unified Fundamental Equation of State of Argon: Construction Technique Within the Framework of Scaling Theory and Tables of Standard Reference Data. Meas Tech 65, 793–802 (2023). https://doi.org/10.1007/s11018-023-02153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02153-5

Keywords

Navigation