Skip to main content
Log in

Cosmological distance scale. Part 17: Coincidence of coincidences

  • Published:
Measurement Techniques Aims and scope

Abstract

The article considers an alternative interpretation of data that were used to conclude the accelerated expansion of the universe in 1998–1999. This interpretation was prompted by doubts as to whether the neglect of the local void effect is justified, as well as by several results obtained when solving the measurement problems of cosmology using the specialized programs MCM-stat, MCM-stat M, and MMI-verification. The programs are designed to automate the statistical analysis of data in the verification and calibration of measuring instruments. The first two programs were applied in the structural and parametric identification of isotropic and anisotropic Friedmann-Robertson-Walker models, respectively, in the form of a relationship between the photometric distance and the redshift of Type Ia supernova in the class of power series. This dependence was analyzed as a mathematical model of the redshift cosmological distance scale. As a physical mechanism underlying the massive accelerated movement of galaxy streams, the study adopted the gravitational dipole of inhomogeneity of the large-scale structure of the universe. A dipole of this kind consists of a pair of superclusters and a supervoid on opposite sides of the celestial sphere. The uneven gravitational interaction in such a pair is perceived as an additional repulsive force of an order comparable to the effect of a supercluster. At least five gravitational dipoles of this kind are shown to exist, concentrating in the region of Galactic poles and forming a giant Galactic polar gravitational dipole. The coincidence of the Galactic polar gravitational dipole and the system of giant superclusters of galaxies in the northern Galactic hemisphere and the system of supervoids in the southern Galactic hemisphere is called the coincidence of coincidences; this fact is considered as a hypothesis alternative to the that about the accelerated expansion of the universe. However, in order to explain the observed facts, it is not necessary to introduce the exotic concepts of dark matter and dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. RRT 507-98. GSI. Measurement Problems. Solution Methods. Terms and Definitions.

  2. GOST 16263-70. GSI. Metrology. Terms and Definitions.

  3. GOST 8.061-80. GSI. Hierarchy Schemes. Scope and Layout.

  4. For more details see. R 50.2.004-2000. GSI. Determination of Characteristics Defining the Mathematical Models of Dependences between Physical Quantities in the Solution of Measurement Problems. Basic Provisions.

  5. Eridanus Supervoid was discovered on August 23, 2007 by Lawrence Rudnik’s group from the University of Minnesota as a cold spot of the cosmic microwave background detected by the WMAP satellite; it constitutes a supervoid having a diameter of about two billion and a depth of about 10 billion light years.

  6. SCP—Supernova Cosmology Project, the name of another group of cosmologists headed by Saul Perlmutter.

  7. A more complete list of applicability conditions for statistical methods and the consequences of their violation is given in [5] on the examples of cosmology problems.

  8. GOST 8.009-84. GSI. Standardized Metrological Characteristics of Measuring Instruments.

  9. Change point is a violation of model continuity (see R 50.2.004-2000, clause 6.5).

  10. Rank inversion is a violation of monotonicity in a sequence of distance redshifts.

  11. The constellations of Pisces and Cetus contain the vast Pisces-Cetus void (α = 0h–2h; δ = +5°–+15°), and the constellation of Aquarius includes the Aquarius Supervoid (α = 20h32m–23h50m; δ = −25°30–+2°45).

  12. The multicolor light curve shape method is used to determine the luminosity of an SN Ia according to the visual light curve.

References

  1. Levin, S.F., Lisenkov, A.N., Sen’ko, O.V., Xarat’yan, E.I.: Sistema Metrologicheskogo Soprovozhdeniya Staticheskih Izme-ritel’ny’x Zadach MMK—stat M [in Russian], user manual, Gosstandart RF, VC RAN Publ. Moscow (1998)

    Google Scholar 

  2. Levin, S.F., Blinov, A.P.: Meas. Tech., 31. Nо 12, 1145–1150 (1988). https://doi.org/10.1007/bf00862607

    Article  Google Scholar 

  3. Astrophysical Formulae, K.R.L.: A Compendium for the Physicist and Astrophysicist, Part. Springer, Berlin, N.Y, pp. 1–2 (1980)

    Google Scholar 

  4. Levin, S.F.: Meas. Tech. 57(4), 378–384 (2014). https://doi.org/10.1007/s11018-014-0464-6

    Article  ADS  Google Scholar 

  5. Levin, S.F.: Meas. Tech. 57(2), 117–122 (2014). https://doi.org/10.1007/s11018-014-0417-0

    Article  ADS  Google Scholar 

  6. Levin, S.F.: Optimal’naya Interpolyacionnaya Fil’traciya Statisticheskih Harakte-ristik Sluchajnyh Funkcij v Determinirovannoj Versii Metoda Monte-Karlo i Zakon Krasnogo Smeshcheniya [in Russian], AN SSSR. NSK, Moscow (1980)

    Google Scholar 

  7. S. F. Levin, in: Proc. 10th Russian Gravitation Conference “Teoreticheskie i Eksperimental’nye Problemy Obshchej Teorii Otnositel’nosti i Gravitacii” [in Russian], RGO Publ., Moscow (1999); р. 245.

  8. S. F. Levin, “On spatial anisotropy of red shift in spectrums of ungalaxy sources,” in: Proc. 15th International Scientific Meeting PIRT-2009: Physical Interpretations of Relativity Theory [in Russian], Moscow, 6–9 July, 2009; BMSTU, Moscow (2009); рр. 234–240.

  9. Kogut, A., et al.: Astrophys. J. 419, 1–6 (1993). https://doi.org/10.48550/arXiv.astro-ph/9312056

    Article  ADS  Google Scholar 

  10. Levin, S.F.: “Anisotropy of red shift,” Giperkompl. Chisla Geom. Fiz., 8. No 1(15), 147–178 (2011)

    Google Scholar 

  11. Dressler, A., Faber, S.M., et al.: Astrophys. J. Lett. 313, L37–L42 (1987). https://doi.org/10.1086/184827

    Article  ADS  Google Scholar 

  12. Gorenstein, M.V., Smoot, G.F.: Astrophys. J. 244, 361–381 (1981). https://doi.org/10.1017/S0074180900068716

    Article  ADS  Google Scholar 

  13. Levin, S.F.: The measuring task of red shift anisotropy identification. Metrologiya (5), 3–21 (2010)

  14. S. F. Levin, “Identification of red shift anisotropy on the basis of the exact decision of Mattig equation,” in: Proc. 6th Int. Meeting “Finsler Extensions of Relativity Theory”, BMSTU, Moscow—IRI HSGP, Fryazino, Russia, November 1–7, 2010.

  15. Levin, S.F.: Meas. Tech. 56(3), 217–222 (2013). https://doi.org/10.1007/s11018-013-0182-5

    Article  Google Scholar 

  16. Riess, A.G., et al.: Astron J 116, 1009–1038 (1998). https://doi.org/10.1086/300499

    Article  ADS  Google Scholar 

  17. Zehavi, I., Riess, A.G., Kirshner, R.P., Dekel, A.: Astrophys. J. 503(2), 483 (1998). https://doi.org/10.1086/306015

    Article  ADS  Google Scholar 

  18. Tully, B., et al.: Astrophys. J. 676(1), 184–205 (2008). https://doi.org/10.1086/527428

    Article  ADS  Google Scholar 

  19. Keenan, R.C., Barger, A.J., Cowie, L.L.: Astrophys. J. (2013). https://doi.org/10.1088/0004-637X/775/1/62

    Article  Google Scholar 

  20. Riess, A.G., et al.: Astrophys. J. 826, 56 (2016). https://doi.org/10.3847/0004-637X/826/1/56

    Article  ADS  Google Scholar 

  21. Planck Collaboration. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth. https://doi.org/10.48550/arXiv.1605.02985 [astro-ph.CO] (May 26, 2016).

  22. Schmidt, B.P.: The Path to Measuring an Accelerating Universe. Nobel Lect. 8, (2011)

  23. S. F. Levin, “Ocenivanie tochnosti resheniya izmeritel’nyh zadach gravitacii i kosmologii v usloviyah neopredelennosti,” in: Proc. 5th Int. Conf. on Gravitation and Astrophysics of Asian-Pacific Countries, Moscow, October 1–7, 2001; RGO, RUDN (2001); p. 120.

  24. S. F. Levin, “Identification of interpreting models in general relativity and cosmology,” in: Proc. Int. Sci. Meeting PIRT-2003: Physical Interpretation of Relativity Theory, Moscow, June 30–July 3, 2003; Moscow, Liverpool, Sunderland, Coda (2003); pp. 72–81.

  25. Perlmutter, S., et al.: Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221

    Article  ADS  Google Scholar 

  26. Levin, S.F.: Meas. Tech. 49(7), 639–647 (2006). https://doi.org/10.1007/s11018-006-0162-0

    Article  Google Scholar 

  27. Levin, S.F.: Meas. Tech. 60(5), 411–417 (2017). https://doi.org/10.1007/s11018-017-1211-6

    Article  Google Scholar 

  28. Levin, S.F.: Meas. Tech. 61(11), 1057–1065 (2018). https://doi.org/10.1007/s11018-019-01549-6

    Article  Google Scholar 

  29. Beaton, R.L., Freedman, W.L., Madore, B.F.: Astrophys. J. 832(2), 210 (2016). https://doi.org/10.3847/0004-637X/832/2/210

    Article  ADS  Google Scholar 

  30. Freedman, W.L.: Cosmol. Nongalact. Astrophys. Jul, vol. 13. astro-ph.CO (2017). https://doi.org/10.48550/arXiv.1706.02739

    Book  Google Scholar 

  31. Hoffman, Y., Pomarède, D., Tully, R.: Nat. Astron. 1, 36 (2017). https://doi.org/10.1038/s41550-016-0036

    Article  ADS  Google Scholar 

  32. Courtois, H.M., Tully, R.B., Racah, Y.H., Pomarede, D., Graziani, R., Dupuy, A.: Cosmol. Nongalact. Astrophys. Aug, vol. 24. astro-ph.CO (2017). https://doi.org/10.48550/arXiv.1708.07547

    Book  Google Scholar 

  33. S. F. Levin, “Photometric scale of cosmological distances: Anisotropy and nonlinearity, isotropy and zero-point,” Proc. Int. Meeting PIRT-2013: Physical Interpretation of Relativity Theory, Moscow, July 1–4, 2013, ed. by M. C. Duffy et al.; Moscow, BMSTU (2013); рр. 210–219.

  34. Levin, S.F.: Meas. Tech. 66(2), 81–87 (2023). https://doi.org/10.1007/s11018-023-02193-y

    Article  Google Scholar 

  35. Levin, S.F.: Meas. Tech. 62(1), 7–15 (2019). https://doi.org/10.1007/s11018-019-01578-1

    Article  Google Scholar 

  36. Levin, S.F.: Meas. Tech. (2023). https://doi.org/10.1007/s11018-023-02237-2

    Article  Google Scholar 

  37. Makarov, D.I.: Cand. Diss. Math-Phys. Special’naya Astrofizicheskaya Observatoriya RAN, Nizhny Arkhyz (2000)

    Google Scholar 

  38. Riess, A.G., et al.: Astrophys. J. 607, 665–687 (2004). https://doi.org/10.1086/383612

    Article  ADS  Google Scholar 

  39. Riess, A.G., et al.: Astrophys. J. 659, 98–121 (2007). https://doi.org/10.1086/510378

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Levin.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 10, pp. 10–16, October 2023. Russian DOI: https://doi.org/10.32446/0368-1025it.2023-10-10-16

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted 08/30/2023. Accepted 09/13/2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, S.F. Cosmological distance scale. Part 17: Coincidence of coincidences. Meas Tech 66, 736–743 (2024). https://doi.org/10.1007/s11018-024-02287-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-024-02287-0

Keywords

UDC

Navigation