Skip to main content
Log in

Cosmological distance scale. Part 8. The scale factor

  • FUNDAMENTAL PROBLEMS IN METROLOGY
  • Published:
Measurement Techniques Aims and scope

Structurally parametric identification of the characteristics of the dispersion in the Friedmann–Robertson–Walker model and its approximations as models for cosmological distance scales are examined on the basis of the data on type SN Ia supernovae used to detect the “acceleration in the expansion of the universe.” It is shown that the deviations from the position characteristics of these models as a function of distance (the scale factor) are multiplicative. Estimates of the convolutions of the random and nonparametric unexcluded systematic components of the inadequacy errors of the Friedmann–Robertson–Walker model are obtained in the class of truncated distributions with zero curvature parameter and a Heckmann approximation with anisotropy and interpolation models taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. The scale factor for the cosmological distance scale should not be confused with the metric parameter of the space, which has the same name and a close physical significance.

  2. Matt Visser is a professor of mathematics at Victoria and Wellington University (New Zealand).

  3. Prof. Otto Hermann Leopold Heckmann was the head of the observatory and department of astronomy at the University of Hamburg (Germany) in 1942 and was elected president of the International Astronomical Union in 1967.

  4. The limits of the possible deviations from the estimates are not indicated in Ref. 3.

  5. The estimates of DL are given in accordance with a computational protocol in terms of the distance moduli μ [2, 3]. When this form is used in the following to represent the results, the significant figures will be indicted in semi-bold print.

References

  1. A. A. Friedmann A. A., “Über die Krümmung des Raumes,” Z. für Physik, 10, 377–386 (1922).

    Article  ADS  MATH  Google Scholar 

  2. A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  3. S. Perlmutter et al., “Measurements of Ω and Λ from 42 high-red shift supernovae,” Astrophys. J., 517, 565–586 (1999).

    Article  ADS  Google Scholar 

  4. K. Lang, Astrophysical Formulas. Pt. 2 [Russian translation], Mir, Moscow (1978).

  5. O. V. Verkhodanov, “Cosmological results from the ‘Planck’ space mission. Comparison with WMAP and BICEP-2 experimental data,” Usp. Fiz. Nauk, 186, No. 1, 3–46 (2016).

    Article  Google Scholar 

  6. P. Ade et al., Planck Collaboration, “Planck 2015 results. XIII. Cosmological parameters,” Astron. & Astrophys., 594. A13 (2016).

  7. A. G. Riess et al., “A 2.4% determination of the local value of the Hubble constant,” Preprint Astrophys. J., http://arXiv:1604.01424v3 [astro-ph.CO] 9 Jun 2016.

  8. Planck Collaboration, “Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth,” Astron. & Astrophys. Manusc., http://arXiv:1605.02985v2 [astro-ph.CO] 26 May 2016, acc Dec. 31, 2017.

  9. M. Visser, “Jerk, snap, and the cosmological equation of state,” http://arXiv:gr-qc/0309109v4 31 Mar 2004.

  10. O. Heckmann, Theorien der Kosmologie, Springer, Berlin (1942).

    Book  MATH  Google Scholar 

  11. B. P. Schmidt, The Path to Measuring an Accelerating Universe: Nobel Lecture, Dec. 8, 2011.

  12. D. Larson et al., “7 year WMAP observations: power spectra and WMAP-derived parameters,” Preprint WMAP, Jan. 26, 2010, http://lambda.gsfc.nasa.gov/product/map/dr4/pub_papers/sevenyear/powspectra/wmap_7yr_power_spectra.pdf, acc. May 28, 2010.

  13. G. Hinshaw et al., “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results,” arXiv:1212.5226v3 [astro-ph.CO] June 4, 2013, acc. July 12, 2018.

  14. P. A. R. Ade et al., Planck Collaboration, “Planck 2015 results: XIII. Cosmological parameters,” Astron. & Astrophys., 594, A13 (2016), arXiv:1502.01589v2 [astro-ph.CO] 6 Feb 2015, acc. Dec. 11, 2015.

  15. W. L. Freedman, “Cosmology at a crossroads: Tension with the Hubble constant,” arxiv.org: 1706.02739 13 Jul 2017, acc. Dec. 3, 2017.

  16. W. L. Freedman, B. F. Madore, B. K. Gibson, et al., “Final results from the Hubble Space Telescope Key Project to measure the Hubble constant,” Astrophys. J., 553, 47–72 (2001).

    Article  ADS  Google Scholar 

  17. S. F. Levin, “The mathematical theory of measurement problems: Applications. Calibration in space and on earth – a metrological and scientifi c impasse?” Kontr.-Izmer. Prib. Sistemy, No. 2, 25–38 (2018).

  18. S. F. Levin, “Cosmological distance scale. Part 7. A new special case with the Hubble constant and anisotropic models,” Izmer. Tekhn., No. 11, 15–21 (2018).

  19. D. Yu. Tsvetkov, N. N. Pavlyuk, O. S. Bartunov, and Yu. P. Pskovskii, Supernovae Catalogue, Shternberg State Astronomical Institute, Moscow (2005), www.astronet.ru/db/sn/catalog.html.

  20. S. F. Levin, Optimal Interpolation Filtration of Statistical Characteristics of Random Functions in a Deterministic Version of the Monte-Carlo Method and the Red Shift Law, NSK AN SSSR, Moscow (1980).

  21. S. F. Levin, “Measurement problem of structural-parametric identification on supernovae type SN Ia for cosmological distances scale of red shift based,” Physical Interpretations of Relativity Theory: Proc. Int. Meeting, Bauman Moscow State Technical University, Moscow, June 29 – July 2, 2015, BMSTU, Moscow (2015), pp. 299–310.

  22. S. F. Levin, “The measurement problem of identifying the error function,” Zakonodat. Prikl. Metrol., No. 4, 27–33 (2016).

    Google Scholar 

  23. S. F. Levin, “Statistical methods for the theory of measurement problems in cosmology,” Yad. Fiz. Inzhinir., 4, No. 9–10, 926–932 (2013).

    Google Scholar 

  24. I. Vuchkov, L. Boyadzhieva, and E. Solakov, Applied Linear Regression Analysis [Russian translation], Finansy i Statistika, Moscow (1987).

  25. S. F. Levin and A. P. Blinov, “Scientifi c-methodological support for guaranteed solution of metrological problems by probabilistic-statistical methods,” Izmer. Tekhn., No. 12, 5–8 (1988).

    Google Scholar 

  26. S. F. Levin, “Metrological certifi cation and accompaniment of programs for statistical processing of data,” Izmer. Tekhn., No. 12, 16–18 (1988).

    Google Scholar 

  27. S. F. Levin, “Cosmological distance scale. Part 5. Metrological expert opinion based on type SN Ia supernovae,” Izmer. Tekhn., No. 8, 3–10 (2016).

    Google Scholar 

  28. M. V. Pruzhinskaya, Supernova Stars, Gamma-Bursts, and the Accelerated Expansion of the Universe: Auth. Abstr. Cand. Dissert. in Phys.-Math. Sci., Lomonosov Moscow State University, Moscow (2014).

  29. S. F. Levin, “Cosmological distance scale. Part 6. Statistical anisotropy of red shift,” Izmer. Tekhn., No. 5, 3–6 (2017).

    Google Scholar 

  30. S. F. Levin, “Mathematical theory of measurement problems: Applications. Statistical monitoring procedures for high precision measurement,” Kontr.-Izmer. Prib. Sistemy, No. 3, 8–11 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Levin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 1, pp. 8–15, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, S.F. Cosmological distance scale. Part 8. The scale factor. Meas Tech 62, 7–15 (2019). https://doi.org/10.1007/s11018-019-01578-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-019-01578-1

Keywords

Navigation