Skip to main content
Log in

Cosmological Distance scale. Part 13: Galactic Polar Redshift Anisotropy of Quasars and Type Ia Supernovae

  • FUNDAMENTAL PROBLEMS OF METROLOGY
  • Published:
Measurement Techniques Aims and scope

In the latter half of the 20th century, data that indicated anomalies of Hubble's redshift law were obtained, and a hypothesis on the origin of quasars as ejections from galaxies with active nuclei was also suggested. By the end of the 20th century, the redshift dipole anisotropy and anomalies of Hubble parameter estimates were discovered in the Local Group of galaxies. The increasing discrepancy of these estimates for Type Ia supernovae (SN Ia) caused a discussion on the crisis in cosmology, initiated by Wendy Freedman and Adam Riess. Such a discrepancy is relative to the estimates of the Hubble parameter based on the measurements of microwave background radiation when interpreting measurement data within various cosmological models and the redshift anisotropy in 2016. The problem of identifying the scale of cosmological distances is considered a calibration problem. As a result of its solution, the redshift anisotropy dipole of SN Ia was revealed as reference points of the photometric distance scale. The dipole has a maximum value in the north galactic pole region and a minimum value in the south galactic pole region. The opposite orientation of the redshift anisotropy dipole for quasars has become a new aspect of the problems of the cosmological distance scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. R 50.2.004-2000. State System for Ensuring Uniform Measurement. Determination of the characteristics of mathematical models of dependencies between physical quantities in solving measurement problems. Basic provisions.

  2. Cold spot was discovered on August 24, 2007. According to the most conservative estimates, the width of this region is 150 to 500 million light years, and the depth is 6 to 10 billion light years (according to calculations, the entire Universe extends for 93.5 billion light years). The radius of the Cold Spot is about 5°, its center is at the point (l = 207.8° and b = −56.3° or α = 03h15m05s and δ = −19o35ʹ02ʺ) at z ≈ 1 [43].

References

  1. H. C. Arp, Atlas of Peculiar Galaxies, California Institute of Technology (1966).

  2. M. Lorez-Corredoira and C. M. Gutierrez, Astron. Astrophys., 390, No. 3, L15–L18 (2002), https://doi.org/https://doi.org/10.1051/0004-6361:20020476.

    Article  ADS  Google Scholar 

  3. E. Hubble, A relation between distance and radial velocity among extragalactic nebulae, Proc. Natl. Acad. Sci., 15, 168–173 (1929).

    Article  ADS  MATH  Google Scholar 

  4. P. Galianni, E. M. Burbidge, H. Arp, V. Junkkarinen, G. Burbidge, and S. Zibetti, Astrophys. J., 620, No. 1, 88–94 (2005), https://doi.org/https://doi.org/10.1086/426886.

    Article  ADS  Google Scholar 

  5. H. Arp, How non-velocity red shifts in galaxies depend on epoch of creation, Apeiron, 1, No. 9–10, 53–80 (1991).

    Google Scholar 

  6. A. R. Sandage, The age of the galaxies and globular cluster, problems of finding the Hubble constant and deceleration parameter, in: Nuclei of Galaxies, D. C. O'Connell (Ed.), Pontifical Academy of Sciences, Vatican City (1971).

  7. R. B. Tully, Origin of Hubble constant controversy, Nature, 334, 209–212 (1988).

    Article  ADS  Google Scholar 

  8. H. C. Arp, Mon. Notices Roy. Astron. Soc., 258, 800–810 (1992), https://doi.org/https://doi.org/10.1093/MNRAS/258A800.

    Article  ADS  Google Scholar 

  9. P. A. Shaver, Ann. N. Y. Acad. Sci., 759, 87–109 (1995), https://doi.org/https://doi.org/10.1111/j.1749-6632.1995.tb17518.x.

    Article  ADS  Google Scholar 

  10. D. I. Makarov, Motions of Galaxies on Large and Small Scales, Ph.D. Thesis in Physics and Mathematics (N. Arkhyz, Special astrophysical laboratory, RAN, 2000).

  11. K. R. Lang, Astrophysical Formulae: A Compendium for the Physicist and Astrophysicist, Parts 1–2, Berlin, New York, Springer-Verlag (1980).

    Book  Google Scholar 

  12. A. G. Riess et al., Astronom. J., 116, 1009–1038 (1998), https://doi.org/https://doi.org/10.1086/300499.

    Article  ADS  Google Scholar 

  13. S. Perlmutter et al., Astrophys. J., 517, 565–586 (1999), https://doi.org/https://doi.org/10.1086/307221.

    Article  ADS  Google Scholar 

  14. Planck Collaboration. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth, Astron. Astrophys., 596, A107 (2016), https://doi.org/10.1051/0004-6361/201628890.

  15. A. G. Riess et al., Astrophys. J., 826, No. 1, 56 (2016), https://doi.org/https://doi.org/10.3847/0004-637X/826/1Z56.

    Article  ADS  MathSciNet  Google Scholar 

  16. S. F. Levin, Scale of cosmological distances. Part 10. Global anisotropy, Izmerit. Tekh., No. 10, 9–25 (2020), https://doi.org/10.32446/0368-1025it.2020-10-9-25.

  17. R. L. Beaton, W. L. Freedman, B. F. Madore, et al., Astrophys. J., 832, No. 2, 210 (2016), https://doi.org/https://doi.org/10.3847/0004-637X/832/2/210.

    Article  ADS  Google Scholar 

  18. W. L. Freedman, Nat. Astron., 1, 0169 (2017), https://doi.org/10.48550/arXiv.1706.02739.

  19. S. F. Levin, Scale of cosmological distances. Part 7. A new incident with the Hubble constant and anisotropic models, Izmerit. Tekh., No. 11, 15–21 (2018), https://doi.org/10.32446/0368-1025it.2018-11-15-21.

  20. O. Heckmann, Theorien der Kosmologie, Berlin, Springer (1942).

    Book  MATH  Google Scholar 

  21. S. F. Levin, Optimal Interpolation Filtering of Statistical Characteristics of Random Functions in a Deterministic Version of the Monte Carlo Method and the Redshift Law, AN SSSR, NSK, Moscow (1980).

  22. S. F. Levin, Scale of cosmological distances. Part 11. "Extraordinary" evidence and the "cosmic impact" problem, Izmerit. Tekh., No. 11, 3–8 (2020), https://doi.org/10.32446/0368-1025it.2020-11-3-8.

  23. S. F. Levin, Scale of cosmological distances. Part 12. Confluent analysis, rank inversion and inadequacy tests, Izmerit. Tekh., No. 12, 13–21 (2020), https://doi.org/10.32446/0368-1025it.2020-12-13-21.

  24. S. Perlmutter, Nobel Lecture. Stockholm. 08.12.2011, Usp. Fiz. Nauk, 183, No. 10, 1060–1077 (2013).

  25. A. G. Riess et al., Astrophys. J., 607, 665–687 (2004), https://doi.org/https://doi.org/10.1086/383612

    Article  ADS  Google Scholar 

  26. A. G. Riess et al., Astrophys. J., 659, 98–121 (2007), https://doi.org/https://doi.org/10.1086/510378.

    Article  ADS  Google Scholar 

  27. S. F. Levin, Photometric scale of cosmological distances. Part II. "Unexpected" coincidences, Izmerit. Tekh., No. 4, 3–7 (2014).

  28. S. F. Levin, Mathematical theory of measurement problems: Applications. Catastrophic phenomenon in cosmology, Kontrol'no-Izmerit. Pribory Sist., No. 3, 8–13 (2014).

  29. S. F. Levin, Mathematical theory of measurement problems. Applications. Catastrophic phenomenon in cosmology, Kontrol'no-Izmerit. Pribory Sist., No. 4, 35–38 (2014).

  30. S. F. Levin, Scale of cosmological distances. Part 5. Metrological expertise for SN Ia type supernovae, Izmerit. Tekh., No. 8, 3–10 (2016).

  31. S. F. Levin, Scale of cosmological distances. Part 6. Statistical anisotropy of the redshift, Izmerit. Tekh., No. 5, 3–6 (2017), https://doi.org/10.32446/0368-1025it.2017-5-3-6.

  32. S. F. Levin, Measuring problems of statistical identification of the cosmological distance scale, Izmerit. Tekh., No. 12, 17–22 (2011).

  33. S. F. Levin, Scale of cosmological distances. Part 8. Scale factor, Izmerit. Tekh., No. 1, 8–15 (2019), https://doi.org/10.32446/0368-1025it.2019-1-8-15.

  34. S. F. Levin, Scale of cosmological distances. Part 9. Deceleration parameter, Izmerit. Tekh., No. 10, 8–14 (2019), https://doi.org/10.32446/0368-1025it.2019-10-8-14.

  35. S. F. Levin and A. P. Blinov, Scientific and methodological support of the guaranteed solution of metrological problems by probabilistic-statistical methods, Izmerit. Tekh., No. 12, 5–8 (1988).

  36. S. F. Levin, A. N. Lisenkov, O. V. Senko, and E. I. Kharat'yan, System of Metrological Support of Static Measuring Tasks of MMK-stat M, User's manual, Gosstandart RF, Computing Center of the Russian Academy of Sciences, Moscow (1998).

  37. M. V. Pruzhinskaya, Supernovae, Gamma-Ray Bursts, and the Accelerated Expansion of the Universe, Ph.D. Thesis in Physics and Mathematics, MGU im. M. V. Lomonosova, Moscow (2014).

  38. S. F. Levin, Maximum compactness method and complex measurement problems, Izmerit. Tekh., No. 7, 15–21 (1995).

  39. M. V. Sazhin, Anisotropy and polarization of cosmic microwave background, state of the art, Usp. Fiz. Nauk, 174, 197–205 (2004), https://doi.org/https://doi.org/10.3367/UFNr.0174.200402g.0197.

    Article  Google Scholar 

  40. H. C. Arp, Quasars, Red Shifts and Controversies, Interstellar Media, Cambridge University Press (1987).

    MATH  Google Scholar 

  41. S. F. Levin, Measuring problem of calibration of a measuring instrument for specified conditions, Izmerit. Tekh., No. 4, 9–15 (2021), https://doi.org/10.32446/0368-1025it.2021-4-9-15.

  42. S. F. Levin, Metrological certification of mathematical models in measuring problems of gravitation and cosmology, Teoreticheskiye i eksperimental'nyye problemy obshchey teorii otnositel'nosti i gravitatsii, Abstracts of Papers, X Russian Gravitational Conference, Moscow, RGO Publ. (1999).

  43. A. Kogut et al., Astrophys. J., 419, 1–6 (1993), https://doi.org/https://doi.org/10.1086/173453.

    Article  ADS  Google Scholar 

  44. M. Cruz, L. Cayon, E. Martmez-Gonzalez, P. Vielva, and J. Jin, Astrophys. J., 655, No. 1, 11 (2007), https://doi.org/https://doi.org/10.1086/509703.

    Article  ADS  Google Scholar 

  45. J. F. Smoot, Anisotropy of the cosmic microwave background: discovery and scientific significance, Usp. Fiz. Nauk, 177, No. 12, 1294–1317 (2007), https://doi.org/https://doi.org/10.3367/UFNr.0177.200712d.1294.

    Article  Google Scholar 

  46. D. T. Wilkinson and R. B. Partridge, Large-scale density nonhomogeneities in the Universe, Nature, 215, 719 (1967).

    Article  ADS  Google Scholar 

  47. G. Burbidge and M. Burbidzh, Quasi-stellar Objects, W.H. Freeman and Company, San Francisco, London (1967).

    Book  Google Scholar 

  48. Z. Idit, A. G. Riess, R. P. Kirshner, and A. Dekel, Astrophys. J., 503, No. 2, 483 (1998), https://doi.org/https://doi.org/10.1086/306015.

    Article  ADS  Google Scholar 

  49. A. Conley et al., Astrophys. J., 664, No. 1, L13–L16 (2007), https://doi.org/https://doi.org/10.1086/520625.

    Article  ADS  Google Scholar 

  50. A. Moss et al., Phys. Rev., 83, No. 10 (2010), https://doi.org/10.1103/PhysRevD.83.103515.

  51. I. Szapudi et al., Mon. Notices Roy. Astron. Soc., 450, 288–294 (2015), https://doi.org/https://doi.org/10.1093/mnras/stv488.

    Article  ADS  Google Scholar 

  52. A. Kovacs et al., Mon. Notices Roy. Astron. Soc., 510, No. 1, 216–229 (2022), https://doi.org/https://doi.org/10.1093/mnras/stab3309.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Levin.

Additional information

Translated from Izmeritel'naya Tekhnika, No. 10, pp. 11–18, October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, S.F. Cosmological Distance scale. Part 13: Galactic Polar Redshift Anisotropy of Quasars and Type Ia Supernovae. Meas Tech 65, 712–719 (2023). https://doi.org/10.1007/s11018-023-02143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02143-7

Keywords

Navigation