Skip to main content
Log in

Cosmological Distance Scale. Part 14: “Hubble Bubble” and the Gravitational Dipole

  • Published:
Measurement Techniques Aims and scope

Drawing on astronomical discoveries made in the past 25 years, the paper discusses possible causes of the phenomenon perceived as the “accelerated expansion of the universe.” In 1998, to confirm the “accelerated expansion of the universe,” the High-Z SN Search Team tested and rejected the hypothesis about the effect produced by a local void — Hubble bubble — using data on 44 Type Ia supernovae (SNe Ia), which was believed to be an alternative to the positive cosmological constant. Also in 1998, the present author and specialists of the Computing Center of the Academy of Sciences (CC RAS) discovered divergent dipole anisotropy in the redshift of 383 quasars and radio galaxies along the Virgo – Leo ↔ Eridanus – Aquarius axis when testing the MCM-stat M program for multivariate statistical analysis using standard reference data. In 2007, the issues associated with anisotropy caught the attention of cosmologists, while in 2016, the High-Z SN Search Team and the Carnegie–Chicago Hubble program initiated a discussion about the impasse in cosmology. An additional analysis revealed that the dipole anisotropy in the redshift of SNe Ia, as well as radio galaxies, is inversely oriented with respect to the dipole anisotropy of quasars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As a function of time, the Hubble constant is called the Hubble parameter [2].

  2. Perhaps the terms “dark substance” and “dark field” would be more appropriate.

  3. Astronomical term — departure of the local value of the Hubble constant H0 from its globally averaged value, a local void in the matter distribution [13].

  4. According to Hubble’s law cz = H0r, a speed of about 7000 km·s−1 corresponds to z ~ 0.02 or a distance of z ~ 108 Mpc.

  5. In the Friedmann-Robertson-Walker model, ΩΛ is called the dark energy density parameter.

  6. RRT 507-98. GSI. Measurement Problems. Solution Methods. Terms and Definitions.

References

  1. S. F. Levin, Meas. Tech., 63, No. 10, 780–797 (2021), https://doi.org/10.1007/s11018-021-01854-z.

    Article  Google Scholar 

  2. N. A. Bahcall, Hubble’s Law and the Expanding Universe, in: Proc. Natl Acad. Sci. USA, 112, 3173–3175 (2015), https://doi.org/10.1073/pnas.1424299112.

    Article  ADS  Google Scholar 

  3. Planck Collaboration. Planck Intermediate Results. XLVI. Reduction of Large-Scale Systematic Effects in HFI Polarization Maps and Estimation of the Reionization Optical Depth. arXiv:1605. 02985v2 [astro-ph.CO] (May 26, 2016).

  4. A. G. Riess et al., Astrophys. J., 826, No. 1, 56, https://doi.org/10.3847/0004-637X/826/1/56.

  5. M. Visser, Classical Quant. Grav., 21, No. 11, 2603 (2004), https://doi.org/10.1088/0264-9381/21/11/006.

    Article  ADS  Google Scholar 

  6. A. G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron. J., 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  7. M. V. Sazhin, Phys. Usp., 47, 187–194 (2004), https://doi.org/10.1070/PU2004v047n02ABEH001630.

    Article  ADS  Google Scholar 

  8. S. Perlmutter et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J., 517, 565–586 (1999).

    Article  ADS  MATH  Google Scholar 

  9. R. L. Beaton, W. L. Freedman, B. F. Madore, et al., Astrophys. J., 832, No. 2, 210 (2016), https://doi.org/10.3847/0004-637X/832/2/210.

    Article  ADS  Google Scholar 

  10. W. L. Freedman, https://doi.org/10.48550/arXiv.1706.02739 (July 13, 2017).

  11. A. Riess et al., Astrophys. J., 876, No. 1, 85 (2019), https://doi.org/10.3847/1538-4357/ab1422.

    Article  ADS  Google Scholar 

  12. A. Elcio et al., J. High Energy Phys., 34, 49–211 (2022), https://doi.org/10.1016/j.jheap.2022.04.002.

    Article  Google Scholar 

  13. A. Conley, R. G. Carlberg, J. Guy, D. A. Howell, S. Jha, A. G. Riess, and M. Sullivan, Astrophys. J., 664, No. 1, L13–L16 (2007), https://doi.org/10.1086/520625.

    Article  ADS  Google Scholar 

  14. I. Zehavi, A. G. Riess, R. P. Kirshner, and A. Dekel, Astrophys. J., 503, No. 2, 483 (1998), https://doi.org/10.1086/306015.

    Article  ADS  Google Scholar 

  15. S. F. Levin, Meas. Tech., 59, No. 8, 791–802 (2016), https://doi.org/10.1007/s11018-016-1047-5.

    Article  Google Scholar 

  16. A. Kogut et al., Astrophys. J., 419, 1–6 (1993), https://doi.org/10.1086/173453.

    Article  ADS  Google Scholar 

  17. D. T. Wilkinson and R. B. Partridge, Nature, 215, 719 (1967), https://doi.org/10.1038/215719a0.

    Article  ADS  Google Scholar 

  18. R. P. Kirshner, A. Jr. Oemler, P. L. Schechter, and S. A. Shectman, Astrophys. J., 314, 493–506 (1987), https://doi.org/10.1086/165080.

  19. G. Aldering, Filling the Void – Understanding the Formation of the Bootes Void in Intergalactic Space, Brief Article, Disco. Mag., (1995), available at: http://findarticles.com/p/articles/mi_m1511/is_n8_v16/ai_17253874 (accessed: Jan. 11, 2023).

  20. I. D. Karachentsev and D. I. Makarov, Galaxy Interactions in the Local Volume, in: J. E. Barnes and D. B. Sanders (eds.), Galaxy Interactions at Low and High Redshift. International Astronomical Union, 186 (1999), https://doi.org/10.1007/978-94-011-4665-4_22.

  21. S. F. Levin, A. N. Lisenkov, O. V. Sen’ko, and E. I. Xarat’yan, Sistema Metrologicheskogo Soprovozhdeniya Staticheskix Izmeritel’ny’x Zadach “MMK-stat M,” user manual, Gosstandart RF, VC RAN Publ., Moscow (1998).

  22. K. R. Lang, Astrophysical Formulae: A Compendium for the Physicist and Astrophysicist, Springer-Verlag, Berlin, N.Y. (1980), https://doi.org/10.1007/978-3-662-21642-2.

  23. S. F. Levin, in: Abstracts of Papers X Russian Gravitation Conf. Teoreticheskie i Eksperimental’nye Problemy Obshchej Teorii Otnositel’nosti i Gravitacii, June 20–27, 1999, Vladimir, RGO Publ., Moscow (1999).

  24. S. F. Levin, On Spatial Anisotropy of Redshift in Spectrums of Extragalactic Sources, in: Physical Interpretations of Relativity Theory: Proc. XV Int. Meeting, Moscow, July 6–9, 2009, ed. by M. C. Duff y, V. O. Gladyshev, A. N. Morozov, and P. Rovlands, Moscow, Liverpool, Sunderland, BMSTU (2009), pp. 234–240.

  25. S. F. Levin, Izmer. Tekh., No. 10, 11–18 (2022), https://doi.org/10.32446/0368-1025it.2022-10-11-18.

  26. S. F. Levin, Meas. Tech., 64, No. 4, 273–281 (2021), https://doi.org/10.1007/s11018-021-01929-x.

    Article  Google Scholar 

  27. S. F. Levin, Meas. Tech., 63, No. 11, 849–855 (2021), https://doi.org/10.1007/s11018-021-01874-9.

    Article  Google Scholar 

  28. S. F. Levin, Matematicheskaya Teoriya Izmeritel’nyh Zadach: Prilozheniya. Kalibrovka Kosmicheskaya i Zemnaya – Metrologicheskij i Nauchnyj Tupik? Kontr.-Izmer. Pribory Sist., No. 2, 35–38 (2018).

  29. S. F. Levin, Izmeritel’naya Zadacha Identifikacij Anisotropii Krasnogo Smeshcheniya, Metrologiya, No. 5, 3–21 (2010).

    Google Scholar 

  30. S. F. Levin, Meas. Tech., 56, No. 3, 217–222 (2013), https://doi.org/10.1007/s11018-013-0182-5

    Article  Google Scholar 

  31. S. F. Levin, Meas. Tech., 57, No. 4, 378–384 (2014). https://doi.org/10.1007/s11018-014-0464-6.

    Article  ADS  Google Scholar 

  32. S. F. Levin, Meas. Tech., 60, No. 5, 411–417 (2017), https://doi.org/10.1007/s11018-017-1211-6.

    Article  Google Scholar 

  33. Y. Hoff man, D. Pomarède, R. B. Tully, and H. Courtois, The Dipole Repeller, arXiv:1702.02483v1 [astro-ph.CO] (Feb. 8, 2017).

  34. D. Proust et al., The Shapley Supercluster: the Largest Matter Concentration in the Local Universe. Reports from Observers, The Messenger, No. 124, 30–31 (2006), available at: https://www.eso.org/sci/publications/mes-senger/archive/no.124-jun06/messenger-no124-30-31.pdf (accessed: Jan., 25, 2023).

  35. What is the Great Attractor? Universe Today, July 14, 2014, available at: https://www.universetoday.com/113150/whatis-the-great-attractor/ (accessed: Jan. 11, 2023).

  36. M. Cruz, L. Cayón, E. Martínez-González, P. Vielva, and J. Jin, Astrophys. J., 655, 11–20 (2007), https://doi.org/10.1086/509703.

    Article  ADS  Google Scholar 

  37. D. J. Schwarz and B. Weinhorst, Astron. Astrophys., 474, No. 3, 717–729 (2007), https://doi.org/10.1051/0004-6361:20077998.

    Article  ADS  Google Scholar 

  38. M. L. McClure and C. C. Dyer, New Astron., 12, No. 7, 533–543 (2007), https://doi.org/10.1016/j.newast.2007.03.005.

    Article  ADS  Google Scholar 

  39. I. Horváth, Z. Bagoly, J. Hakkila, and L. V. Tóth, Astron. Astrophys., 8, No. 584 (2015), https://doi.org/10.1051/0004-6361/201424829.

  40. R. B. Tully, H. Courtois, Y. Hoff man, and D. Pomarède, Nature, 513, 7516 (2014), https://doi.org/10.1038/nature13674.

  41. S. F. Levin, Identification of Interpreting Models in General Relativity and Cosmology, in: Physical Interpretation of Relativity Theory: Proc. Int. Sci. Meeting PIRT-2003, Moscow, June 30 – July 3, 2003, Moscow, Liverpool, Sunderland, Coda (2003), pp. 72–81.

  42. G. Feldman and R. Cousins, Phys. Rev. D, 57, No. 7, 3873–3889 (1998), https://doi.org/10.1103/PhysRevD.57.3873.

    Article  ADS  Google Scholar 

  43. G. Rosi, F. Sorrentino, L. Cacciapuoti, et al., Nature, 510, 518–521 (2014), https://doi.org/10.1038/nature13433.

    Article  ADS  Google Scholar 

  44. T. Quinn, H. Parks, C. Speake, and R. Davis, Phys. Rev. Lett., 111, No. 10, 101102 (2013), https://doi.org/10.1103/PhysRevLett.111.101102.

  45. S. F. Levin, Meas. Tech., 62, No. 1, 7–15 (2019), https://doi.org/10.1007/s11018-019-01578-1.

    Article  Google Scholar 

  46. S. F. Levin, Phys. Atom. Nucl., 78, No. 13, 1528–1533 (2015), https://doi.org/10.1134/S1063778815130190.

    Article  ADS  Google Scholar 

  47. D. Yu. Tsvetkov, N. N. Pavlyuk, O. S. Bartunov, and Yu. P. Pskovskii, Supernovae Catalogue, State Astronomical Sternberg Institute, Moscow (2005), available at: www.astronet.ru/db/sn/catalog.html (accessed: Jan. 11, 2023).

  48. I. Vuchkov, L. Boyadzhieva, and E. Solakov, Prikladnoj Linejny’j Regressionny’j Analiz, transl. by Yu. P. Adler, Finansy i Statistika Publ., Moscow (1987).

  49. S. F. Levin, Meas. Tech., 63, No. 11, 940–949 (2021), https://doi.org/10.1007/s11018-021-01876-7.

    Article  Google Scholar 

  50. J. F. Smoot, Nobel lecture, Stockholm, December 8, 2006, Rev. Mod. Phys., 79, 1349 (2007), https://doi.org/10.1103/RevModPhys.79.1349.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Levin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 2, pp. 4–11, February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, S.F. Cosmological Distance Scale. Part 14: “Hubble Bubble” and the Gravitational Dipole. Meas Tech 66, 81–87 (2023). https://doi.org/10.1007/s11018-023-02193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02193-x

Keywords

Navigation