Skip to main content
Log in

Methods and Means of Measurements of the Dispersion Parameters of Particles of Suspensions in the Submicron and Nanometer Range

  • Published:
Measurement Techniques Aims and scope

Basic algorithms for processing autocorrelation functions for the method of dynamic light scattering, the most efficient method for the determination of the sizes of particles, are considered. Algorithms for processing the functions for the case of a polydisperse distribution of particles are proposed. Results of measurements of the parameters of particles in liquid media, in particular, natural mineral waters, are presented and a technique for their identification is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. V. Lesnikov, O. V. Karpov, M. V. Balakhanov, et al., “National Primary Standard for the units of the dispersion parameters of aerosols, suspensions, and powdered materials, GET 163–2010,” Izmer. Tekhn., No. 1, 3–6 (2013); Measur. Techn., 56, No. 1, 1–7 (2013).

  2. GOST 8.606–2012, GSI. State Measurement Chain for Instruments for the Measurement of the Dispersion Parameters of Aerosols, Suspensions, and Powder-like Materials.

  3. O. V. Karpov, D. M. Balakhanov, E. V. Lesnikov, et al., “Nanoparticles in ambient air. Measurement methods,” Izmer. Tekhn., No. 3, 31–34 (2011); Measur. Techn., 54, No. 3, 269–274 (2011).

  4. M. V. Balakhanov, D. M. Balakhanov, and E. V. Lesnikov, et al., “Nanoparticles in natural mineral water: technique and results of measurements,” Nanotekhnol. Ekol. Proizv., 20, No. 1, 40–43 (2013).

    Google Scholar 

  5. ISO 13320:2009, Particle Size Analysis. Laser Diffraction Methods.

  6. ISO 22412:2008, Particle Size Analysis. Dynamic Light Scattering (DLS).

  7. ISO 15900:2009, Determination of Particle Size Distribution. Differential Electrical Mobility Analysis for Aerosol Particles.

  8. GOST 8.755–2011, GSI. Disperse Composition of Gaseous Media. Determination of the Size of Nanoparticles by means of Diffuse Spectroscopy.

  9. ISO 22412:2008, Particle Size Analysis. Dynamic Light Scattering (DLS).

  10. B. J. Berne and R. Pecora, Dynamic Light Scatterring with Applications to Chemistry, Biology and Physics, Wiley-Interscience, New York (1976).

    Google Scholar 

  11. H. Cummings and E. Paik, Spectroscopy of Optical Shift and Correlation of Photons [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  12. W. Schartl, Light Scattering from Polymer Solutions and Nanoparticle Dispersions, Springer-Verlag, Berlin, Heidelberg (2007).

    Google Scholar 

  13. D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants,” J. Chem. Phys., 57, 4814–4820 (1972).

    Article  ADS  Google Scholar 

  14. B. J. Frisken, “Revisiting the method of cuulants for the analysis of dynamic light-scattering data,” J. Applied Optics, 40, No. 24, 4087–4091 (2001).

    Article  ADS  Google Scholar 

  15. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall, Engelwood Cliffs, New Jersey (1974).

    MATH  Google Scholar 

  16. N. Ostrowsky et al., “Exponential sampling method for light scattering polydispersity analysis,” Opt. Acta, 28, No. 8, 1059–1070 (1981).

    Article  ADS  Google Scholar 

  17. S. W. Provencher, “A constrainted regularization method for inverting data represented by linear algebraic integral equations,” Comput. Phys. Commun., 27, 213–227 (1982).

    Article  ADS  Google Scholar 

  18. S. W. Provencher, “CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun., 27, 227–242 (1982).

    ADS  Google Scholar 

  19. B. E. Dahneke, Measurement of Suspended Particles by Quasi-Elastic Light Scattering, John Wiley & Sons, New York (1983).

    Google Scholar 

  20. J. Vanhoudt and J. Clauwaert, “Experimental comparison of fiber receivers and a pinhole receiver for dynamic light scattering,” Langmuir, 15, Iss. 1, 44–57 (1999).

    Article  Google Scholar 

  21. O. V. Karpov, E. V. Lesnikov, M. V. Balakhanov, et al., “Methods for the measurement of the characteristics of nanoparticles and their dispersion parameters used in standard equipment,” Ross. Nanotekhnol., No. 5–6, 379–385 (2013).

  22. S. S. Batsanov et al., “Water shells of diamond nanoparticles in colloidal solutions,” Appl. Phys. Lett., 104, No. 13, 133105 (2014).

    Article  ADS  Google Scholar 

  23. G. van de Hulst, Scattering of Light by Small Particles [Russian translation], Inostr. Lit., Moscow (1961).

    Google Scholar 

  24. O. V. Karpov, D. M. Balakhanov, E. V. Lesnikov, et al., “State Secondary Standard of the units of dispersion parameters of suspensions in the nanometer range,” Izmer. Tekhn., No. 2, 3–6 (2011).

  25. A. N. Zakhar’evskii, Interferometers, Oborongiz, Moscow (1952).

    Google Scholar 

  26. MI 3324–11 (FR.1.27.2011.10821, Certification License No. 178–01.00294.2011).

  27. M. V. Balakhanov, D. M. Balakhanov, and E. V. Lesnikov, “COOMET pilot comparisons in the field of measurement of the size and concentration of aerosol particles and nanoparticles,” in: Physicochemical Measurements: Rep. COOMET PK 1.8.1 Electrochemistry, Sept. 17–18, 2013, VNIIFTRI, Mendeleevo (2014), pp. 39–44.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Lesnikov or M. V. Balakhanov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 1, pp. 61–68, January, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesnikov, E.V., Balakhanov, M.V. & Balakhanov, D.M. Methods and Means of Measurements of the Dispersion Parameters of Particles of Suspensions in the Submicron and Nanometer Range. Meas Tech 58, 95–105 (2015). https://doi.org/10.1007/s11018-015-0669-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-015-0669-3

Keywords

Navigation