Skip to main content
Log in

Application of hydrogen in production of ferroalloys

  • Published:
Metallurgist Aims and scope

Abstract

Most common ferroalloys are produced mainly by carbothermal reduction of high-grade ores or concentrates, which results in large CO2 emissions. Hydrogen is a promising alternative to coke and coal, which are reducing agents in the carbothermal process. Hydrogen production is becoming increasingly cheaper, and in the future, it may become available for extensive industrial applications. The advantage of using hydrogen is due to its ability to reduce many different oxides, which are the sources of metals in ferroalloy production, at lower temperatures than using carbon-based reducing agents. Hydrogen is the most promising, and its use is presently possible in the production of ferrotungsten, ferromolybdenum, and ferronickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asif M (2022) Chapter 3 sustainable energy transition in the 21st century. In: Handbook of energy and environmental security. Academic Press, pp 27–38

    Chapter  Google Scholar 

  2. Mohsin M, Kamran HW, Nawaz MA, Hussain MS, Dahri AS (2021) “Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing. Asian Econ J Environ Manag 284:111999

    Google Scholar 

  3. Bataille C (2020) Low and zero emissions in the steel and cement industries: barriers, technologies and policies. OECD Green Growth Papers. OECD Publishing, Paris https://doi.org/10.1787/5ccf8e33-en

    Book  Google Scholar 

  4. Ali I, Sun H, Tariq G, Ali G, Baz K, Mahmood H, Khan I, Yao J (2022) Asymmetric impact of coal and gas on carbon dioxide emission in six Asian countries: Using asymmetric and non-linear approach. J Clean Prod 367:132934. https://doi.org/10.1016/j.jclepro.2022.132934

    Article  CAS  Google Scholar 

  5. Na H, Sun J, Qiu Z, Yuan Y, Du T (2022) Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process. Energy 257:124822. https://doi.org/10.1016/j.energy.2022.124822

    Article  CAS  Google Scholar 

  6. Lisienko VG, Chesnokov YN, Lapteva AV (2017) Use of the triad of blast furnace, oxygen converter, and electric arc furnace to reduce the carbon footprint. Izv Vyssh Ucheb Zav Chern Metall 60(8):623–628. https://doi.org/10.17073/0368-0797-2017-8-623-628

    Article  Google Scholar 

  7. Plakitkina LS, Plakitkin YA, Dyachenko KI (2021) Decarbonization of the economy as a factor influencing the development of the coal industry in the world and Russia. Chern Metall Byul Ntiei 77(8):902–912. https://doi.org/10.32339/0135-5910-2021-8-902-912

    Article  Google Scholar 

  8. Electronic resource: Hydrogen Council Hydrogen scaling up, a sustainable pathway for the global energy transition. https://hydrogencouncil.com/wp-content/uploads/2017/11/Hydrogen-Scaling-up_Hydrogen-Council_2017.compressed.pdf. Accessed 11 July 2022

  9. Electronic resource: Hydrogen Council Path to hydrogen competitiveness, a cost perspective. https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf. Accessed 11 July 2022

  10. Luidold S, Antrekowitsch H (2007) Hydrogen as a reducing agent: Thermodynamic possibilities. JOM 59(10):58–62. https://doi.org/10.1007/s11837-007-0133-1

    Article  CAS  Google Scholar 

  11. Sommerfeld M, Friedrich B (2021) Replacing fossil carbon in the production of ferroalloys with a focus on bio-based carbon: a review. Minerals 11:1286. https://doi.org/10.3390/min11111286

    Article  CAS  Google Scholar 

  12. Safarian J (2021) A Sustainable process to produce manganese and its alloys through hydrogen and aluminothermic reduction. Processes 10(1):27. https://doi.org/10.3390/pr10010027

    Article  CAS  Google Scholar 

  13. Kero I, Dalaker H, Osen K, Ringdalen E (2021) Some carbon-free technologies for manganese ferroalloy production. SSRN Electron J. https://doi.org/10.2139/ssrn.3926069

    Article  Google Scholar 

  14. Şeşen F (2017) Practical reduction of manganese oxide. J Chem Technol Appl. https://doi.org/10.35841/chemical-technology.1.1.26-27

    Article  Google Scholar 

  15. De Bruijn T, Soerawidjaja T, De Jongt W, Van Den Berg P (1980) Modeling of the reduction of manganese oxides with hydrogen. Chem Eng Sci (35):1591–1599

  16. Zaki M, Hasan M, Pasupulety L, Kumari K (1997) Thermochemistry of manganese oxides in reactive gas atmospheres: probing redox compositions in the decomposition course mnO2 → mnO. Thermochim Acta (303):171–181

  17. Terayama K, Shimazaki T (2000) Effect of hydrogen on the reduction kinetics of manganese oxide at high temperatures by new EGA method. Netsu Sokutei (27):13–18

  18. Tang J, Chu M, Li F, Feng C, Liu Z, Zhou Y (2020) Development and progress on hydrogen metallurgy. Int J Miner Met Mater 27(6):713–723. https://doi.org/10.1007/s12613-020-2021-4

    Article  CAS  Google Scholar 

  19. Dose MW, Donne WS (2011) Manganese dioxide structural effects on its thermal decomposition. Mat Sci Eng B 176(15):1169–1177. https://doi.org/10.1016/j.mseb.2011.06.007

    Article  CAS  Google Scholar 

  20. Gonzalez C, Gutierrez JI, Gonzales-Velasco JR, Cid A, Arranz A, Arranz JF (1998) Application of differential scanning calorimetry to the reduction of several manganese oxides. J Therm Anal Calorim 52:985

    Article  CAS  Google Scholar 

  21. Electronic resource: IRENA (2022) Indonesia energy transition outlook, international renewable energy agency, Abu Dhabi. https://www.irena.org/publications/2022/Oct/Indonesia-Energy-Transition-Outlook. Accessed 30 Oct 2022

  22. Electronic resource: IRENA (2022) China’s Route to Carbon Neutrality: Perspectives and the Role of Renewables, International Renewable Energy Agency, Abu Dhabi. https:// www.irena.org/publications/2022/Jul/Chinas-Route-to-Carbon-Neutrality. Accessed 30 Oct 2022

  23. Electronic resource: Kazakhstan Energy Profile. Energy Security. https://www.iea.org/reports/kazakhstan-energy-profile/energy-security. Accessed 11 Jan 2022

  24. Kharitonova DV (2020) Energy in India: state and development prospects. Geoekonomika Energ. https://doi.org/10.48137/2687-0703_2020_11_3_44

    Article  Google Scholar 

  25. Mastepanov A, Sumin A (2021) Energy policy of Brazil. EP 3(157):58–79. https://doi.org/10.46920/2409-5516_2021_3157_58

    Article  Google Scholar 

  26. Berryman EJ, Paktunc D, Kingston D, Beukes JP (2021) Composition and Cr- and Fe-speciation of dust generated during ferrochrome production in a DC arc furnace. Clean Eng Technol 6:100386. https://doi.org/10.1016/j.clet.2021.100386

    Article  Google Scholar 

  27. Davies J, Paktunc D, Ramos-Hernandez J, Tangstad M, Ringdalen E, Beukes J, Bessarabov D, du Preez S (2020) The use of hydrogen as a potential reductant in the chromite smelting industry. Minerals. https://doi.org/10.3390/min12050534

    Article  Google Scholar 

  28. Hu Q, Ma D, Liu Y, Huang Q, You Z, Lv X (2020) Preparation of ferrochromium nitride via reduction and nitridation of chromite spinel with ammonia gas. Powder Technol 386:449–456. https://doi.org/10.1016/j.pow-tec.2021.03.064

    Article  Google Scholar 

  29. Tyutrin AA, Gorokhov AD, Kopylova YaO (2019) Current state of silicon and ferrosilicium production in Russia and abroad. Molodezh Vestn Irgtu 9(3):93–97

    Google Scholar 

  30. Voloshin VI, Nazarova OE (2022) Low-carbon energy development: threats for Russia and opportunities to overcome them. Ross Vneshneekonomich Vestn. https://doi.org/10.24412/2072-8042-2022-2-5-15

    Article  Google Scholar 

  31. Riva L, Surup GR, Buø TV, Nielsen HF (2019) A study of densified biochar as carbon source in the silicon and ferrosilicon production. Energy 181:985–996. https://doi.org/10.1016/j.energy.2019.06.013

    Article  CAS  Google Scholar 

  32. Han G, Sohn H (2005) Kinetics of the hydrogen reduction of silica incorporating the effect of gas-volume change upon reaction. J Am Ceram Soc 88(4):882–888. https://doi.org/10.1111/j.1551-2916.2005.00144.x

    Article  CAS  Google Scholar 

  33. Saevarsdottir G, Magnusson T, Kvande H (2021) Reducing the carbon footprint: primary production of aluminum and silicon with changing energy systems. J Sustain Met 7:848–857. https://doi.org/10.1007/s40831-021-00429-0

    Article  Google Scholar 

  34. Li X, Zhang G, Tang K et al (2015) Carbothermal reduction of quartz in methane-hydrogen-argon gas mixture. Metall Mater Trans B 4:2384–2393. https://doi.org/10.1007/s11663-015-0407-x

    Article  CAS  Google Scholar 

  35. Gasik M (2013) Chapter 13 - Technology of Vanadium Ferroalloys. In: Handbook of Ferroalloys—2013. Butterworth-Heinemann, pp 397–409 https://doi.org/10.1016/B978-0-08-097753-9.00013-7

    Chapter  Google Scholar 

  36. Makhotkina ES, Shubina MV (2020) Extraction of vanadium from iron ore raw materials. Aktual Probl Sovr Nauki Tekhn Obraz 11(1):26–28

    Google Scholar 

  37. Kim B‑S, Kim S‑B, Lee H‑I, Choi Y‑Y (2011) A novel process for producing ferromolybdenum powder master alloy without generating secondary pollutants through a two-step hydrogen reduction process. Mater Trans 52:1288–1293. https://doi.org/10.2320/matertrans.M2011037

    Article  CAS  Google Scholar 

  38. Elliott R, Pickles CA (2017) Thermodynamic analysis of the selective reduction of a nickeliferous limonic laterite ore by hydrogen. High Temp Mater Process 36(8):835–846. https://doi.org/10.1515/htmp-2015-0208

    Article  CAS  Google Scholar 

  39. Haque N, Norgate T (2013) Estimation of greenhouse gas emissions from ferroalloy production using life cycle assessment with particular reference to Australia. J Clean Prod 39:220–230. https://doi.org/10.1016/j.jclepro.2012.08.010

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP14972750)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Akhmetov.

Additional information

Translated from Metallurg, No. 11, pp. 27–32, November, 2023. Russian DOI: https://doi.org/10.52351/00260827_2023_11_27

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work aimed to review the current state of the use of hydrogen in the production of ferroalloys and to substantiate and study the possibilities of its application in this industry.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmetov, A.S., Eremeeva, Z.V. & Makhambetov, E.N. Application of hydrogen in production of ferroalloys. Metallurgist (2024). https://doi.org/10.1007/s11015-024-01656-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11015-024-01656-y

Keywords

Navigation