Skip to main content
Log in

Generalized flutter reliability analysis with adjoint and direct approaches for aeroelastic eigen-pair derivatives computation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The article presents physics based time invariant generalized flutter reliability approach for a wing in detail. For carrying flutter reliability analysis, a generalized first order reliability method (FORM) and a generalized second order reliability method (SORM) algorithms are developed. The FORM algorithm requires first derivative and the SORM algorithm requires both the first and second derivatives of a limit state function; and for these derivatives, an adjoint and a direct approaches for computing eigen-pair derivatives are proposed by ensuring uniqueness in eigenvector and its derivative. The stability parameter, damping ratio (real part of an eigenvalue), is considered as implicit type limit state function. To show occurrence of the flutter phenomenon, the limit state function is defined in conditional sense by imposing a condition on flow velocity. The aerodynamic parameter: slope of the lift coefficient curve (\(C_{L}\)) and structural parameters: bending rigidity (EI) and torsional rigidity (GJ) of an aeroelastic system are considered as independent Gaussian random variables, and also the structural parameters are modeled as second-order constant mean stationary Gaussian random fields having exponential type covariance structures. To represent the random fields in finite dimensions, the fields are discretized using Karhunen–Loeve expansion. The analysis shows that the derivatives of an eigenvalue obtained from both the adjoint and direct approaches are the same. So the cumulative distribution functions (CDFs) of flutter velocity will be the same, irrespective of the approach chosen, and it is also reflected in CDFs obtained using various reliability methods based on adjoint and direct approaches: first order second moment method, generalized FORM, and generalized SORM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fung YC (2008) An introduction to the theory of aeroelasticity. Dover Publications Inc, Mineola, New York

    Google Scholar 

  2. Dowell EH (2015) A modern course in aeroelasticity, 5th revised and Enlarged edition. Springer, Switzerland

  3. Wright JR, Cooper JE (2015) Introduction to aircraft aeroelasticity and loads, 2nd edn. Wiley, Chichester

    Google Scholar 

  4. Pettit CL (2004) Uncertainty quantification in aeroelasticity: recent results and research challenges. J Aircr 41(5):1217–1229. https://doi.org/10.2514/1.3961

    Article  Google Scholar 

  5. Ueda T (2005) Aeroelastic analysis considering structural uncertainty. Aviation 9(1):3–7. https://doi.org/10.1080/16487788.2005.9635889

    Article  Google Scholar 

  6. Danowsky BP, Chrstos JR, Klyde DH, Farhat C, Brenner M (2008) Application of multiple methods for aeroelastic uncertainty analysis. In: AIAA atmospheric flight mechanics conference and exhibit, Honolulu, Hawaii, USA, Aug. 18–21. https://doi.org/10.2514/6.2008-6371

  7. Onkar AK (2021) A successive robust flutter prediction technique for aeroelastic systems using \(\mu\) method. Meccanica 56(10):2613–2629. https://doi.org/10.1007/s11012-021-01390-8

    Article  MathSciNet  Google Scholar 

  8. Pitt DM, Haudrich DP, Thomas MJ, Griffin KE (2008) Probabilistic aeroelastic analysis and its implications on flutter margin requirements. In: 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Schaumburg, IL, USA, April 7–10. https://doi.org/10.2514/6.2008-2198

  9. Lindsley NJ, Beran PS, Pettit CL (2002) Effects of uncertainty on nonlinear plate response in supersonic flow. In: 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization, Atlanta, Georgia, USA, Sept. 04–06. https://doi.org/10.2514/6.2002-5600

  10. Castravete SC, Ibrahim RA (2008) Effect of stiffness uncertainties on the flutter of a cantilever wing. AIAA J 46(4):925–935. https://doi.org/10.2514/1.31692

    Article  Google Scholar 

  11. Beran P, Stanford B, Schrock C (2017) Uncertainty quantification in aeroelasticity. Annu Rev Fluid Mech 49:361–386. https://doi.org/10.1146/annurev-fluid-122414-034441

    Article  MathSciNet  Google Scholar 

  12. Ge YJ, Xiang HF, Tanaka H (2000) Application of a reliability analysis model to bridge flutter under extreme winds. J Wind Eng Ind Aerodyn 86(2–3):155–167. https://doi.org/10.1016/S0167-6105(00)00008-8

    Article  Google Scholar 

  13. Su C, Luo J, Xiao C (2013) Efficient approach for reliability assessments on aeroinstability of long-span bridges. J Bridge Eng 18(6):570–575. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000447

    Article  Google Scholar 

  14. Pourzeynali S, Datta TK (2002) Reliability analysis of suspension bridges against flutter. J Sound Vib 254(1):143–162. https://doi.org/10.1006/jsvi.2002.4090

    Article  Google Scholar 

  15. Cheng J, Cai CS, Xiao RC, Chen SR (2005) Flutter reliability analysis of suspension bridges. J Wind Eng Ind Aerodyn 93(10):757–775. https://doi.org/10.1016/j.jweia.2005.08.003

    Article  Google Scholar 

  16. Canor T, Caracoglia L, Denoël V (2015) Application of random eigenvalue analysis to assess bridge flutter probability. J Wind Eng Ind Aerodyn 140:79–86. https://doi.org/10.1016/j.jweia.2015.02.001

    Article  Google Scholar 

  17. Liaw DG, Yang HTY (1991) Reliability of uncertain laminated shells due to buckling and supersonic flutter. AIAA J 29(10):1698–1708. https://doi.org/10.2514/3.10793

    Article  Google Scholar 

  18. Liaw DG, Yang HTY (1993) Reliability and nonlinear supersonic flutter of uncertain laminated plates. AIAA J 31(12):2304–2311. https://doi.org/10.2514/3.11929

    Article  Google Scholar 

  19. Shufang S, Zhenzhou L, Weiwei Z, Zhengyin Y (2009) Reliability and sensitivity analysis of transonic flutter using improved line sampling technique. Chin J Aeronaut 22(5):513–519. https://doi.org/10.1016/S1000-9361(08)60134-X

    Article  Google Scholar 

  20. Borello F, Cestino E, Frulla G (2010) Structural uncertainty effect on classical wing flutter characteristics. J Aerosp Eng 23(4):327–338. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000049

    Article  Google Scholar 

  21. Verhoosel CV, Scholcz TP, Hulshoff SJ, Gutiérrez MA (2009) Uncertainty and reliability analysis of fluid-structure stability boundaries. AIAA J 47(1):91–104. https://doi.org/10.2514/1.35770

    Article  Google Scholar 

  22. Swain PK, Sharma N, Maiti DK, Singh BN (2020) Aeroelastic analysis of laminated composite plate with material uncertainty. J Aerosp Eng. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001107

    Article  Google Scholar 

  23. Wang X, Qiu Z (2009) Nonprobabilistic interval reliability analysis of wing flutter. AIAA J 47(3):743–748. https://doi.org/10.2514/1.39880

    Article  Google Scholar 

  24. Rezaei M, Fazelzadeh SA, Mazidi A, Friswell MI, Khodaparast HH (2020) Fuzzy uncertainty analysis and reliability assessment of aeroelastic aircraft wings. Aeronaut J 124(1275):786–811. https://doi.org/10.1017/aer.2020.2

    Article  Google Scholar 

  25. Stanford B, Sauer A, Jacobson K, Warner J (2022) Gradient-enhanced reliability analysis of transonic aeroelastic flutter. In: AIAA SCITECH 2022 Forum. https://doi.org/10.2514/6.2022-0632

  26. Kumar S, Onkar AK, Manjuprasad M (2019) Frequency domain approach for probabilistic flutter analysis using stochastic finite elements. Meccanica 54:2207–2225. https://doi.org/10.1007/s11012-019-01061-9

    Article  MathSciNet  Google Scholar 

  27. Kumar S, Onkar AK, Manjuprasad M (2020) Stochastic modeling and reliability analysis of wing flutter. J Aerosp Eng 33(5):04020044. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001153

    Article  Google Scholar 

  28. Kumar S, Onkar AK, Manjuprasad M (2023) A study on stochastic aeroelastic stability and flutter reliability of a wing. Acta Mech 234:6649–6675. https://doi.org/10.1007/s00707-023-03727-8

    Article  MathSciNet  Google Scholar 

  29. Yao G, Zhang Y, Li C (2018) Aeroelastic reliability and sensitivity analysis of a plate interacting with stochastic axial airflow. Int J Dyn Control. 6(2):561–570. https://doi.org/10.1007/s40435-017-0338-2

    Article  MathSciNet  Google Scholar 

  30. Pourazarm P, Caracoglia L, Lackner M, Modarres-Sadeghi Y (2016) Perturbation methods for the reliability analysis of wind-turbine blade failure due to flutter. J Wind Eng Ind Aerodyn 156:159–171. https://doi.org/10.1016/j.jweia.2016.07.011

    Article  Google Scholar 

  31. Li S, Caracoglia L (2019) Surrogate model Monte Carlo simulation for stochastic flutter analysis of wind turbine blades. J Wind Eng Ind Aerodyn 188:43–60. https://doi.org/10.1016/j.jweia.2019.02.004

    Article  Google Scholar 

  32. Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter. National Advisory Committee for Aeronautics, Washington, p 496

    Google Scholar 

  33. Reddy JN (2017) An introduction to finite element method, 3rd edn. McGraw-Hill

  34. Kleiber M, Hien TD (1992) The stochastic finite element method: basic perturbation technique and computer implementation. Wiley, Chichester

    Google Scholar 

  35. Haldar A, Mahadevan S (2000) Probability, reliability, and statistical methods in engineering design. Wiley, New York

    Google Scholar 

  36. Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Dover Publications Inc, Mineola, New York

    Google Scholar 

  37. Haldar A, Mahadevan S (2000) Reliability assessment using stochastic finite element analysis. Wiley, New York

    Google Scholar 

  38. Kosambi DD (1943) Statistics in function space. J Indian Math Soc. 7:76–88

    MathSciNet  Google Scholar 

  39. Van Trees HL (2004) Detection, estimation, and modulation theory, part i: detection, estimation, and linear modulation theory. Wiley, New York

    Google Scholar 

  40. Cardani C, Mantegazza P (1979) Calculation of eigenvalue and eigenvector derivatives for algebraic flutter and divergence eigenproblems. AIAA J 17(4):408–412. https://doi.org/10.2514/3.61140

    Article  Google Scholar 

  41. Kaiser C, Quero D (2022) Effect of aerodynamic damping approximations on aeroelastic eigensensitivities. Aerospace. https://doi.org/10.3390/aerospace9030127

    Article  Google Scholar 

  42. Bindolino G, Mantegazza P (1987) Aeroelastic derivatives as a sensitivity analysis of nonlinear equations. AIAA J 25(8):1145–1146. https://doi.org/10.2514/3.9758

    Article  Google Scholar 

  43. Nelson RB (1976) Simplified calculation of eigenvector derivatives. AIAA J 14(9):1201–1205. https://doi.org/10.2514/3.7211

    Article  MathSciNet  Google Scholar 

  44. Murthy DV, Haftka RT (1988) Derivatives of eigenvalues and eigenvectors of a general complex matrix. Int J Numer Methods Eng. 26(2):293–311. https://doi.org/10.1002/nme.1620260202

    Article  MathSciNet  Google Scholar 

  45. Nowak AS, Collins KR (2012) Reliability of structures. CRC Press, Boca Raton

    Book  Google Scholar 

  46. Choi SK, Grandhi R, Canfield RA (2006) Reliability-based structural design. Springer, London

    Google Scholar 

  47. Kumar S, Onkar AK, Manjuprasad M (2021) Probabilistic flutter analysis of a cantilever wing. Adv Struct Vib, Lect Notes Mech Eng. https://doi.org/10.1007/978-981-15-5862-7_12

    Article  Google Scholar 

  48. Melchers RE (1999) Structural reliability analysis and prediction, 2nd edn. Wiley, Chichester

    Google Scholar 

  49. Rackwitz R, Fiessler B (1978) Structural reliability under combined random load sequences. Comput Struct 9(5):489–494. https://doi.org/10.1016/0045-7949(78)90046-9

    Article  Google Scholar 

  50. Rackwitz R, Fiessler B. Note on discrete safety checking when using non-normal stochastic models for basic variables. Load project working session. MIT, Cambridge

  51. Fiessler B, Rackwitz R, Neumann HJ (1979) Quadratic limit states in structural reliability. J Eng Mech Div 105(4):661–676

    Article  Google Scholar 

  52. Hu Z, Mansour R, Olsson M, Du X (2021) Second-order reliability methods: a review and comparative study. Struct Multidiscipl Optim. 64:3233–3263. https://doi.org/10.1007/s00158-021-03013-y

    Article  MathSciNet  Google Scholar 

  53. Breitung K (1984) Asymptotic approximations for multinormal integrals. J Eng Mech 110(3):357–366

    Article  Google Scholar 

  54. Mansour R, Olsson M (2014) A closed-form second-order reliability method using noncentral chi-squared distributions. J Mech Des Trans ASME 136(10):101402. https://doi.org/10.1115/1.4027982

    Article  Google Scholar 

  55. Konishi S, Niki N, Gupta AK (1988) Asymptotic expansions for the distribution of quadratic forms in normal variables. Ann Inst Stat Math 40:279–296. https://doi.org/10.1007/BF00052345

    Article  MathSciNet  Google Scholar 

  56. Jensen JL (1995) Saddlepoint approximations. Oxford University Press, New York

    Book  Google Scholar 

  57. Hu Z, Du X (2018) Saddlepoint approximation reliability method for quadratic functions in normal variables. Struct Saf 71:24–32. https://doi.org/10.1016/j.strusafe.2017.11.001

    Article  Google Scholar 

  58. Du X, Zhang J (2010) Second-order reliability method with first-order efficiency. In: Volume 1: 36th design automation conference, Parts A and B, pp 973–984

  59. Huang X, Li Y, Zhang Y, Zhang X (2018) A new direct second-order reliability analysis method. Appl Math Model 55:68–80. https://doi.org/10.1016/j.apm.2017.10.026

    Article  MathSciNet  Google Scholar 

  60. Lugannani R, Rice S (1980) Saddle point approximation for the distribution of the sum of independent random variables. Adv Appl Probab 12(2):475–490. https://doi.org/10.2307/1426607

    Article  MathSciNet  Google Scholar 

  61. Goland M (1945) The flutter of a uniform cantilever wing. J Appl Mech 12(4):A197–A208. https://doi.org/10.1115/1.4009489

    Article  Google Scholar 

  62. Irwin CAK, Guyett PR (1965) The subcritical response and flutter of a swept-wing model. HM Stationery Office, London

    Google Scholar 

  63. Bulmer MG (1967) Principles of statistics. The MIT Press, Cambridge

    Google Scholar 

  64. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076. https://doi.org/10.1214/aoms/1177704472

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Dr. Sandeep Kumar would like to thank Prof. Abhijit Gogulapati (Department of Aerospace Engineering, IIT Bombay, Mumbai) and Dr. Amit Kumar Onkar (CSIR-National Aerospace Laboratories, Bengaluru) for their valuable feedback on the work presented. Dr. Kumar also wants to acknowledge the use of computing resources at ACE Facility, Aerospace Engg. Dept., IIT Bombay.

Funding

The research work reported in this article did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

The author declared no potential Conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Detailed expression of symbolic notation appeared in both adjoint and direct approaches

For the random variable/random field case, the right hand side of Eqs. (40) and (54) can be written as:

$$\begin{aligned}{} & {} Re({\textbf{y}}_{2})+iIm({\textbf{y}}_{2})\nonumber \\{} & {} \quad = - \left( \lambda _j^{2} \frac{\partial {\textbf{A}}}{\partial {r_{\beta }}} + \lambda _j \frac{\partial {\textbf{B}}}{\partial {r_{\beta }}} + \frac{\partial {{\textbf{C}}}}{\partial {r_{\beta }}}\right) \frac{\partial {\bar{{\textbf{q}}}_j}}{\partial r_{\alpha }} \nonumber \\{} & {} \qquad -\frac{\partial {\lambda _j}}{\partial r_{\beta }}(2\lambda _j{\textbf{A}}+{\textbf{B}}) \frac{\partial {\bar{{\textbf{q}}}_j}}{\partial r_{\alpha }} - \frac{\partial Im(\lambda _j)}{\partial r_{\beta }}\bigg (\lambda _{j}\frac{b}{U}\frac{\partial {{\textbf{B}}}}{\partial C(k_{j})}\frac{\partial C(k_j)}{\partial k_j} \nonumber \\{} & {} \qquad +\frac{b}{U}\frac{\partial {{\textbf{C}}}}{\partial C(k_{j})}\frac{\partial C(k_j)}{\partial k_j} \bigg ) \frac{\partial {\bar{{\textbf{q}}}_j}}{\partial r_{\alpha }}-\frac{\partial \lambda _{j}}{\partial {r_{\alpha }}}\bigg (2\lambda _{j}\frac{\partial {{\textbf{A}}}}{\partial {r_{\beta }}} + \frac{\partial {{\textbf{B}}}}{\partial {r_{\beta }}} + 2\frac{\partial \lambda _{j}}{\partial r_{\beta }} {\textbf{A}} \nonumber \\{} & {} \qquad +\frac{Im(\lambda _{j})}{\partial {r_{\beta }}}\frac{b}{U}\frac{\partial {\textbf{B}}}{\partial {C(k_j)}}\frac{\partial {C(k_j)}}{\partial k_j}\bigg )\bar{{\textbf{q}}}_j - \frac{\partial {\lambda _{j}}}{\partial {r_{\alpha }}}\left( 2\lambda _{j}{\textbf{A}}+{\textbf{B}}\right) \frac{\partial {\bar{{\textbf{q}}}_j}}{\partial r_{\beta }}\nonumber \\{} & {} \qquad -\frac{\partial {Im(\lambda _{j})}}{\partial {r_{\alpha }}}\bigg (\frac{b}{U}\frac{\partial {\lambda _{j}}}{\partial {r_{\beta }}}\frac{\partial {{\textbf{B}}}}{\partial {C(k_j)}}\frac{\partial {C(k_{j})}}{\partial {k_{j}}} + \lambda _{j}\frac{b^2}{U^2}\frac{\partial {Im(\lambda _{j})}}{\partial {r_{\beta }}}\nonumber \\{} & {} \qquad \bigg (\left( \frac{\partial {C(k_j)}}{\partial {k_{j}}}\right) ^2 \frac{\partial ^2{{\textbf{B}}}}{\partial {C(k_{j})^2}} +\frac{\partial ^2C(k_j)}{\partial k_j^2}\frac{\partial {{\textbf{B}}}}{\partial {C(k_j)}} \bigg ) \nonumber \\{} & {} \qquad + \frac{b}{U}\lambda _{j}\frac{\partial ^2{{\textbf{B}}}}{\partial {r_{\beta }}\partial {C(k_j)}}\frac{\partial C(k_j)}{\partial {k_j}}\bigg )\bar{{\textbf{q}}}_j -\frac{\partial {Im(\lambda _{j})}}{\partial {r_{\alpha }}}\bigg (\frac{b^2}{U^2}\frac{\partial {Im(\lambda _{j})}}{\partial {r_{\beta }}} \nonumber \\{} & {} \qquad \bigg (\left( \frac{\partial {C(k_j)}}{\partial k_j}\right) ^2 \frac{\partial ^2{{\textbf{C}}}}{\partial C(k_j)^2} + \frac{\partial {{\textbf{C}}}}{\partial {C(k_j)}}\frac{\partial ^2C(k_{j})}{\partial {k_j^2}}\bigg )\nonumber \\{} & {} \qquad +\frac{b}{U}\frac{\partial {C(k_{j})} }{\partial {k_j}}\frac{\partial ^{2 }{\textbf{C}}}{\partial {r_{\beta }}\partial {C(k_{j})}}\bigg )\bar{{\textbf{q}}}_j - \frac{\partial {Im(\lambda _{j})}}{\partial {r_{\alpha }}}\bigg (\frac{b}{U}\lambda _{j}\frac{\partial {{\textbf{B}}}}{\partial {C(k_j)}}\nonumber \\{} & {} \qquad \frac{\partial {C(k_{j})}}{\partial k_{j}} +\frac{b}{U}\frac{\partial {{\textbf{C}}}}{\partial {C(k_{j})}}\frac{\partial {C(k_{j})}}{\partial {k_{j}}} \bigg )\frac{\partial {\bar{{\textbf{q}}}_j}}{\partial r_{\beta }} - \bigg (\lambda _{j}^{2}\frac{\partial ^{2}{\textbf{A}}}{\partial r_{\beta }\partial r_{\alpha }} + \lambda _{j}\frac{\partial ^{2}{\textbf{B}}}{\partial r_{\beta }\partial r_{\alpha }} \nonumber \\{} & {} \qquad + \frac{\partial ^{2}{\textbf{C}}}{\partial r_{\beta }\partial r_{\alpha }} + 2\lambda _{j}\frac{\partial \lambda _{j}}{\partial r_{\beta }}\frac{\partial {{\textbf{A}}}}{\partial {r_{\alpha }}}+\frac{\partial \lambda _{j}}{\partial r_{\beta }}\frac{\partial {{\textbf{B}}}}{\partial {r_{\alpha }}}+\frac{b}{U}\frac{\partial {Im(\lambda _{j})}}{\partial {r_{\beta }}}\frac{C(k_{j})}{\partial {k_j}}\lambda _{j}\nonumber \\{} & {} \qquad \frac{\partial ^2{\textbf{B}}}{\partial C(k_j)\partial {r_{\alpha }}} +\frac{b}{U}\frac{\partial {Im(\lambda _{j})}}{\partial {r_{\beta }}}\frac{\partial C(k_{j})}{\partial {k_j}}\frac{\partial ^{2}{\textbf{C}}}{\partial C(k_j) \partial {r_{\alpha }}}\bigg )\bar{{\textbf{q}}}_j \nonumber \\{} & {} \qquad - \bigg (\lambda _{j}^{2}\frac{\partial {{\textbf{A}}}}{\partial {r_{\alpha }}}+\lambda _{j} \frac{\partial {{\textbf{B}}}}{\partial {r_{\alpha }}}+\frac{\partial {{\textbf{C}}}}{\partial {r_{\alpha }}}\bigg ) \frac{\partial {\bar{{\textbf{q}}}_j}}{\partial r_{\beta }} \end{aligned}$$
(A.1)

Appendix B: Derivatives of Theodorsen’s function

First derivatives of Theodorsen’s function with respect to k is written as:

$$\begin{aligned} \frac{dC(k)}{dk} =\frac{i\left( \frac{dH_{1}^{2}(k)}{dk}H_{o}^{2}(k)-H_{1}^{2}(k)\frac{dH_{o}^{2}(k)}{dk}\right) }{\left( H_{1}^{2}(k)+iH_{o}^{2}(k)\right) ^2} \end{aligned}$$
(B.1)

And the second derivatives of Theodorsen’s function with respect to k can be written as:

$$\begin{aligned} \frac{d^2C(k)}{dk^2}= & {} \frac{i\bigg (\frac{d^2H_{1}^{2}(k)}{dk^2}H_{o}^{2}(k)-H_{1}^{2}(k)\frac{d^2H_{o}^{2}(k)}{dk^2}\bigg )}{(H_{1}^{2}(k)+iH_{o}^{2}(k))^2}\nonumber \\{} & {} - \dfrac{ 2i\bigg (\left( \frac{dH_{1}^{2}(k)}{dk}\right) ^{2}H_{o}^{2}(k) - H_{1}^{2}(k)\frac{dH_{o}^{2}(k)}{dk}\frac{dH_{1}^{2}(k)}{dk} \bigg )}{\left( H_{1}^{2}(k)+iH_{o}^{2}(k)\right) ^3} \nonumber \\{} & {} +\dfrac{2\bigg ( { \frac{dH_{1}^{2}(k)}{dk}\frac{dH_{o}^{2}(k)}{dk}H_{o}^{2}(k)-H_{1}^{2}(k)\left( \frac{dH_{o}^{2}(k)}{dk}\right) ^2\bigg )}}{\left( H_{1}^{2}(k)+iH_{o}^{2}(k)\right) ^3} \end{aligned}$$
(B.2)

The derivative terms of Hankel’s function given in Eqs. (B.1) and (B.2) are obtained from Bessel’s function properties as:

$$\begin{aligned} \frac{dH_{o}^{2}(k)}{dk}= & {} \frac{dJ_{o}(k)}{dk}-i\frac{dY_{o}(k)}{dk}=-J_{1}(k) + i Y_{1}(k) \end{aligned}$$
(B.3)
$$\begin{aligned} \frac{d^2H_{o}(k)}{dk^2}= & {} -\frac{\left( J_{o}(k)-J_{2}(k)\right) }{2}+i\frac{\left( Y_{o}(k)-Y_{2}(k)\right) }{2} \end{aligned}$$
(B.4)
$$\begin{aligned} \frac{dH_{1}^{2}(k)}{dk}= & {} \frac{J_{o}(k)-J_{2}(k)}{2} - \frac{i\left( Y_{o}(k)-Y_{2}(k)\right) }{2} \end{aligned}$$
(B.5)
$$\begin{aligned} \frac{d^2H_{1}^{2}(k)}{dk^2}= & {} \frac{1}{4}\left( -3J_{1}(k)+J_{3}(k)\right) -\frac{i}{4}\left( -3Y_{1}(k)+Y_{3}(k)\right) \end{aligned}$$
(B.6)

Appendix C: Derivatives of eigenvalues: adjoint and direct approaches

1.1 C.1. Random variables

Tables 10 and 11 show the first derivative of eigenvalues with respect to structural parameters EI and GJ using adjoint and direct approaches and central difference scheme. Table 12 shows the first and second derivatives of eigenvalues, obtained from both the adjoint and direct approaches, with respect to aerodynamic parameter \(C_{L}\).

1.2 C.2. Random fields

Tables 13 and 14 show the derivatives of eigenvalues with respect to discretized field random variables \(\xi _{n}\) \((n = 1, 2, 3, 4)\) obtained using adjoint and direct approaches, when the structural parameters EI and GJ are modeled as random fields.

Table 10 Derivative of eigenvalues with respect to EI at various flow velocities
Table 11 Derivative of eigenvalues with respect to GJ at various flow velocities
Table 12 First and second derivatives of eigenvalues with respect to \(C_{L}\) at various flow velocities
Table 13 Derivative of eigenvalues with respect to \(\xi _{n}\) at various flow velocities (EI modeled as random field)
Table 14 Derivative of eigenvalues with respect to \(\xi _{n}\) at various flow velocities (GJ modeled as random field)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S. Generalized flutter reliability analysis with adjoint and direct approaches for aeroelastic eigen-pair derivatives computation. Meccanica 59, 761–791 (2024). https://doi.org/10.1007/s11012-024-01807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-024-01807-0

Keywords

Navigation