Skip to main content
Log in

Aeroelastic reliability and sensitivity analysis of a plate interacting with stochastic axial airflow

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The aeroelastic reliability and sensitivity of a simply supported isotropic plate interacting with upper axial airflow are investigated. Based on the assumed mode method and the linear potential flow theory, the equation of motion of the plate interacting with axial airflow is established using the Hamilton’s principle. The limit state function representing the aeroelastic failure mode is obtained from aerodynamic stability analysis of the plate. The mean value first order second moment method is adopted to analyze the aeroelastic reliability and sensitivity of the plate. The effects of the stochastic properties of the flow velocity, flow density, and the plate geometry dimensions on the aeroelastic reliability are analyzed. From the results, it can be seen that the aeroelastic reliability decreases with increasing velocity and mass density of the airflow. The flow mass density has more significant effects on the reliability sensitivity than the flow velocity. The reliability decreases with increasing length and width, and increases with increasing thickness of the plate. The standard deviation of the thickness of the plate has more significant effects on the aeroelastic reliability than the length and width. This study provides a new perspective on understanding the instability behaviors of the plate in airflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Païdoussis MP (2003) Fluid–structure interactions: slender structures and axial flow, vol 2. Elsevier/Academic Press, London

    Google Scholar 

  2. Bisplinghoff RL, Ashley H, Halfman RL (1955) Aeroelasticity. Cambridge, London

    MATH  Google Scholar 

  3. Dugundji J, Dowell EH, Perkin B (1963) Subsonic flutter of panels on continuous elastic foundations. AIAA J 5(1):1146–1154

    Google Scholar 

  4. Weaver DS, Unny TE (1970) The hydroelastic stability of a flat plate. J Appl Mech 37(1):823–827

    Article  MATH  Google Scholar 

  5. Ellen CH (1973) The stability of simply supported rectangular surfaces in uniform subsonic flow. J Appl Mech 40(1):68–72

    Article  MATH  Google Scholar 

  6. Kornecki A, Dowell EH, O’brien J (1976) On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J Sound Vib 47(2):163–178

    Article  MATH  Google Scholar 

  7. Tang DM, Dowell EH (2002) Limit cycle oscillations of two-dimensional panels in low subsonic flow. Int J Non-Linear Mech 37(7):1199–1209

    Article  MATH  Google Scholar 

  8. Tang L, Païdoussis MP (2008) The influence of the wake on the stability of cantilevered flexible plates in axial flow. J Sound Vib 310(3):512–526

    Article  Google Scholar 

  9. Korbahti B, Uzal E (2007) Vibrations of an anisotropic plate under fluid flow in a channel. J Vib Control 13(8):1191–1204

    Article  MathSciNet  MATH  Google Scholar 

  10. Tan BH, Lucey AD, Howell RM (2013) Aero-/hydro-elastic stability of flexible panels: prediction and control using localised spring support. J Sound Vib 332(26):7033–7054

    Article  Google Scholar 

  11. Kerboua Y, Lakis AA, Thomas M, Marcouiller L (2008) Vibration analysis of rectangular plates coupled with fluid. Appl Math Model 32(12):2570–2586

    Article  MATH  Google Scholar 

  12. Yao G, Li FM (2013) Chaotic motion of a composite laminated plate with geometric nonlinearity in subsonic flow. Int J Non-Linear Mech 50:81–90

    Article  Google Scholar 

  13. Tubaldi E, Amabili M (2013) Vibrations and stability of a periodically supported rectangular plate immersed in axial flow. J Fluids Struct 39:391–407

  14. Yao G, Li FM (2015) Nonlinear vibration of a two-dimensional composite laminated plate in subsonic air flow. J Vib Control 21(4):662–669

    Article  Google Scholar 

  15. Yao G, Zhang YM (2016) Dynamics and stability of an axially moving plate interacting with surrounding airflow. Meccanica 51(9):2111–2119

    Article  MathSciNet  MATH  Google Scholar 

  16. Yao G, Li FM (2016) Stability and vibration properties of a composite laminated plate subjected to subsonic compressible airflow. Meccanica 51(10):2277–2287

    Article  MathSciNet  MATH  Google Scholar 

  17. Nie J, Rellingwood B (2000) Directional methods for structural reliability analysis. Struct Saf 22(3):233–249

    Article  Google Scholar 

  18. Zhao YG, Ono T (2001) Moment methods for structural reliability. Struct Saf 23(1):47–75

    Article  Google Scholar 

  19. Zhao YG, Ono T (1999) A general procedure for first/second-order reliability method (FORM/SORM). Struct Saf 21(2):95–112

    Article  Google Scholar 

  20. Zhao Y, Zhang Y (2014) Reliability design and sensitivity analysis of cylindrical worm pairs. Mech Mach Theory 82:218–230

    Article  Google Scholar 

  21. Xiang Y, Liu Y (2011) Application of inverse first-order reliability method for probabilistic fatigue life prediction. Probab Eng Mech 26(2):148–156

    Article  Google Scholar 

  22. Choi CK, Yoo HH (2012) Uncertainty analysis of nonlinear systems employing the first-order reliability method. J Mech Sci Technol 26:39–44

    Article  Google Scholar 

  23. Baran I, Tutum CC, Hattel JH (2013) Reliability estimation of the pultrusion process using the first-order reliability method (FORM). Appl Compos Mater 20(4):639–653

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the China Postdoctoral Science Foundation (2015M581345), the National Natural Science Foundation of China (51135003), the National Basic Research Program of China (2014CB046303), and the Fundamental Research Funds for the Central Universities of China (N150303001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo Yao or Yimin Zhang.

Appendix

Appendix

$$\begin{aligned} \mathbf{K}_1= & {} \int _0^b {\int _0^a {\frac{Eh}{2(1-\nu ^{2})}\frac{\partial \mathbf{U}}{\partial x}\frac{\partial \mathbf{U}^{\mathrm{T}}}{\partial x}+\frac{Eh}{4(1+\nu )}\frac{\partial \mathbf{U}}{\partial y}\frac{\partial \mathbf{U}^{\mathrm{T}}}{\partial y}dxdy} }\end{aligned}$$
(A-1)
$$\begin{aligned} \mathbf{K}_2= & {} \int _0^b {\int _0^a {\frac{Eh}{2(1-\nu ^{2})}\frac{\partial \mathbf{V}}{\partial y}\frac{\partial \mathbf{V}^{\hbox {T}}}{\partial y}+\frac{Eh}{4(1+\nu )}\frac{\partial \mathbf{V}}{\partial x}\frac{\partial \mathbf{V}^{\mathrm{T}}}{\partial x}dxdy} }\end{aligned}$$
(A-2)
$$\begin{aligned} \mathbf{K}_3= & {} \int _0^b \int _0^a \frac{Eh^{3}}{12(1-\nu ^{2})}\left[ \nu \frac{\partial ^{2}{} \mathbf{W}}{\partial x^{2}}\frac{\partial ^{2}\mathbf{W}^{\mathrm{T}}}{\partial y^{2}}+\frac{1}{2}\left( \frac{\partial ^{2}\mathbf{W}}{\partial x^{2}}\frac{\partial ^{2}{} \mathbf{W}^{\mathrm{T}}}{\partial x^{2}}\right. \right. \nonumber \\&\left. +\frac{\partial ^{2}{} \mathbf{W}}{\partial y^{2}}\frac{\partial ^{2}{} \mathbf{W}^\mathrm{T}}{\partial y^{2}}\right) +\left( 1-\nu \right) \frac{\partial ^{2}{} \mathbf{W}}{\partial x\partial y}\left. \frac{\partial ^{2}{} \mathbf{W}^{\mathrm{T}}}{\partial x\partial y}\right] dxdy\end{aligned}$$
(A-3)
$$\begin{aligned} \mathbf{K}_4= & {} \int _0^b {\int _0^a {\frac{\nu Eh}{(1-\nu ^{2})}\frac{\partial \mathbf{U}}{\partial x}\frac{\partial \mathbf{V}^{\mathrm{T}}}{\partial y}+\frac{Eh}{2(1+\nu )}\frac{\partial \mathbf{V}}{\partial x}\frac{\partial \mathbf{U}^{\mathrm{T}}}{\partial y}dxdy} }\end{aligned}$$
(A-4)
$$\begin{aligned} \mathbf{M}_1= & {} \int _0^b {\int _0^a {\rho h\mathbf{UU}^{\mathrm{T}}dxdy} } , \quad \mathbf{M}_2 =\int _0^b {\int _0^a {\rho h\mathbf{VV}^{\mathrm{T}}dxdy} } , \nonumber \\ \mathbf{M}_3= & {} \int _0^b {\int _0^a {\rho h\mathbf{WW}^{\mathrm{T}}dxdy}}\end{aligned}$$
(A-5)
$$\begin{aligned} \mathbf{M}_f= & {} \int _0^b {\int _0^a {\rho _\infty {\tilde{\mathbf{W}}{} \mathbf{W}}^{\mathrm{T}}dxdy} } ,\end{aligned}$$
(A-6)
$$\begin{aligned} \mathbf{C}_f= & {} \int _0^b {\int _0^a {2\rho _\infty U_\infty \frac{\partial {\tilde{\mathbf{W}}}}{\partial x}{} \mathbf{W}^{\mathrm{T}}dxdy} } ,\end{aligned}$$
(A-7)
$$\begin{aligned} \mathbf{K}_f= & {} \int _0^b {\int _0^a {\rho _\infty U_\infty ^2 \frac{\partial ^{2}{\tilde{\mathbf{W}}}}{\partial x^{2}}\mathbf{W}^{\mathrm{T}}dxdy} } \end{aligned}$$
(A-8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, G., Zhang, Y. & Li, C. Aeroelastic reliability and sensitivity analysis of a plate interacting with stochastic axial airflow. Int. J. Dynam. Control 6, 561–570 (2018). https://doi.org/10.1007/s40435-017-0338-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0338-2

Keywords

Navigation