Skip to main content
Log in

Nonlinear geometric decomposition of airfoils into the thickness and camber contributions

  • Research
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the thin airfoil theory, the camber line and the thickness distribution of general airfoils are mainly extracted by a linear combination of the upper and lower surfaces, giving rise to geometric distortions at the leading edge. Furthermore, despite the recent effort to obtain analytic expressions for the zero-lift angle of attack and quarter-chord moment coefficient, analytic generalizations are needed for the camber line component in the trigonometric series coefficients. In this sense, the present paper proposes a straightforward algorithm to extract the camber line and thickness distribution of general-shaped airfoils based on a finite difference method and the Bézier curve fitting. Integrals in the thin airfoil theory involving a Bernstein basis are performed, leading to series coefficients related to Gegenbauer polynomials. The algorithm is validated against analytical expressions of the NACA airfoils without introducing or adapting geometric parameters, and the results demonstrate good accuracy. In addition, the proposed algorithm indicated a significantly different geometric behavior for the SD7003 and E387 airfoils’ camber slope at the leading edge in contrast with the classical linear approximation. Moreover, the method can be coupled conveniently in recent unsteady aerodynamic models established on the thin airfoil theory to obtain closed-form expressions for general airfoils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability and materials

Data will be made available from the corresponding author on request.

References

  1. Newman JN (2018) Marine Hydrodynamics. The MIT Press, Cambridge

    Google Scholar 

  2. Prandtl L (1918) Tragflügeltheorie

  3. Katz J, Plotkin A (2001) Low-speed aerodynamics, vol 13. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Anderson JD, Wendt J (1995) Computational fluid dynamics, vol 206. Springer, Cham

    Google Scholar 

  5. Glauert H (1926) The elements of aerofoil and airscrew theory. The University Press, Cambridge

    Google Scholar 

  6. Crighton DG (1985) The Kutta condition in unsteady flow. Annu Rev Fluid Mech 17(1):411–445

    Article  Google Scholar 

  7. Widmann AGM (2015) Formation and detachment of leading edge vortices on unsteady airfoils. Ph.D. thesis, Technische Universität

  8. Wagner H (1925) Über die Entstehung des dynamischen Auftriebes von Tragflügeln. ZAMM-J Appl Math Mech/Zeit Angew Math Mech 5(1):17–35

    Article  Google Scholar 

  9. Theodorsen T (1949) General theory of aerodynamic instability and the mechanism of flutter

  10. Rosenhead L (1931) The formation of vortices from a surface of discontinuity. Proc R Soc London Series A Contain Papers Math Phys Charact 134(823):170–192

    Google Scholar 

  11. Katz J, Weihs D (1978) Behavior of vortex wakes from oscillating airfoils. J Aircr 15(12):861–863

    Article  Google Scholar 

  12. Ramesh K, Gopalarathnam A, Granlund K, Ol MV, Edwards JR (2014) Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J Fluid Mech 751:500–538

    Article  MathSciNet  Google Scholar 

  13. Saini A, Narsipur S, Gopalarathnam A (2021) Leading-edge flow sensing for detection of vortex shedding from airfoils in unsteady flows. Phys Fluids 33(8):087105

    Article  Google Scholar 

  14. Saini A, Gopalarathnam A (2018) Leading-edge flow sensing for aerodynamic parameter estimation. AIAA J 56(12):4706–4718

    Article  Google Scholar 

  15. Houghton EL, Carpenter PW (2003) Aerodynamics for engineering students. Elsevier, New York

    Google Scholar 

  16. Li W-L, Xie H, Li Q-D, Zhou L-P, Yin Z-P (2014) Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface. PLoS ONE 9(12):e115471

    Article  Google Scholar 

  17. Khomiak O, Stetsyuk P, Zhydkov V, Infante L (2023) Using optimization to construct naturally parametrized curve with cubic curvature. In: International conference on smart technologies in urban engineering, Springer, pp 14–24

  18. Boehm W (1987) Bézier presentation of airfoils. Computer aided geometric design 4(1–2):17–22

    Article  MathSciNet  Google Scholar 

  19. Shikhar JA (2017) Shape parameterization of airfoil shapes using Bezier curves. In: Innovative design and development practices in aerospace and automotive engineering. Springer, pp 79–85

  20. Ribeiro A, Awruch A, Gomes H (2012) An airfoil optimization technique for wind turbines. Appl Math Model 36(10):4898–4907

    Article  Google Scholar 

  21. Lepine J, Guibault F, Trepanier J-Y, Pepin F (2001) Optimized nonuniform rational B-spline geometrical representation for aerodynamic design of wings. AIAA J 39(11):2033–2041

    Article  Google Scholar 

  22. Barger RL (1975) Adaptation of the Theodorsen theory to the representation of an airfoil as a combination of a lifting line and a thickness distribution. Tech. rep

  23. Theodorsen T (1932) Theory of wing sections of arbitrary shape, US Government Printing Office

  24. Joseph C, Mohan R (2021) Closed-form expressions of lift and moment coefficients for generalized camber using thin-airfoil theory. AIAA J 59(10):4264–4270

    Article  Google Scholar 

  25. Motta V, Guardone A, Quaranta G (2015) Influence of airfoil thickness on unsteady aerodynamic loads on pitching airfoils. J Fluid Mech 774:460–487

    Article  MathSciNet  Google Scholar 

  26. Anderson JD (2016) Fundamentals of aerodynamics, 6th edn. McGraw-Hill Education, Columbus

    Google Scholar 

  27. Ashraf M, Young J, Lai J (2009) Effect of airfoil thickness, camber and Reynolds number on plunging airfoil propulsion. In: 47th AIAA Aerospace sciences meeting including the new horizons forum and aerospace exposition, p 1274

  28. Miotto R, Wolf W, Gaitonde D, Visbal M (2023) Pitch-plunge equivalence in dynamic stall of ramp motion airfoils. AIAA J 61(1):174–188

    Article  Google Scholar 

  29. Xu X, Lagor FD (2021) Quasi-steady effective angle of attack and its use in lift-equivalent motion design. AIAA J 59(7):2613–2626

    Article  Google Scholar 

  30. SureshBabu A, Medina A, Rockwood M, Bryant M, Gopalarathnam A (2021) Theoretical and experimental investigation of an unsteady airfoil in the presence of external flow disturbances. J Fluid Mech 921:A21

    Article  Google Scholar 

  31. Narsipur S, Hosangadi P, Gopalarathnam A, Edwards JR (2020) Variation of leading-edge suction during stall for unsteady aerofoil motions. J Fluid Mech 900:A25

    Article  MathSciNet  Google Scholar 

  32. Deparday J, Mulleners K (2019) Modeling the interplay between the shear layer and leading edge suction during dynamic stall. Phys Fluids 31(10):107104

    Article  Google Scholar 

  33. Martínez A, He G, Mulleners K, Ramesh KK (2022) Modulation of the leading-edge vortex shedding rate in discrete-vortex methods. In: AIAA SCITECH 2022 Forum, p 2416

  34. Ramesh K, Granlund K, Ol MV, Gopalarathnam A, Edwards JR (2018) Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows. Theoret Comput Fluid Dyn 32:109–136

    Article  MathSciNet  Google Scholar 

  35. Suresh Babu AV, Narsipur S, Bryant M, Gopalarathnam A (2022) Leading-edge-vortex tailoring on unsteady airfoils using an inverse aerodynamic approach. Phys Fluids 34(5):057107

    Article  Google Scholar 

  36. Liu Z, Lai JC, Young J, Tian F-B (2017) Discrete vortex method with flow separation corrections for flapping-foil power generators. AIAA J 55(2):410–418

    Article  Google Scholar 

  37. Paturle ML, Bose C, Viola IM, Ramesh KK (2022) Dynamic detection of flow separation using integral formulation of unsteady boundary layer equations. In: AIAA AVIATION 2022 Forum, p 4138

  38. Narsipur S, Gopalarathnam A, Edwards JR (2019) Low-order model for prediction of trailing-edge separation in unsteady flow. AIAA J 57(1):191–207

    Article  Google Scholar 

  39. Ramesh K (2020) On the leading-edge suction and stagnation-point location in unsteady flows past thin aerofoils. J Fluid Mech 886:A13

    Article  MathSciNet  Google Scholar 

  40. Hirato Y, Shen M, Gopalarathnam A, Edwards JR (2021) Flow criticality governs leading-edge-vortex initiation on finite wings in unsteady flow. J Fluid Mech 910:A1

    Article  MathSciNet  Google Scholar 

  41. Farouki RT (2012) The Bernstein polynomial basis: a centennial retrospective. Comput Aided Geom Design 29(6):379–419

    Article  MathSciNet  Google Scholar 

  42. Jacobs EN, Ward KE, Pinkerton RM (1933) The characteristics of 78 related airfoil section from tests in the variable-density wind tunnel. 460, US Government Printing Office

  43. Kim DS, Kim T, Rim S-H (2012) Some identities involving Gegenbauer polynomials. Adv Differ Equ 2012(1):1–11

    Article  MathSciNet  Google Scholar 

  44. Selig MS (1995) Summary of low speed airfoil data. SOARTECH Publications, Ann Arbor

    Google Scholar 

  45. Drela M (1989) XFOIL: an analysis and design system for low Reynolds number airfoils. In: Low reynolds number aerodynamics: proceedings of the Conference Notre Dame, Indiana, USA, 5–7 June 1989, Springer, pp 1–12

  46. Van Dyke MD (1956) Second-order subsonic airfoil theory including edge effects. Tech. rep

  47. Brandão MP (1987) Improper integrals in theoretical aerodynamics: the problem revisited. AIAA J 25(9):1258–1260

    Article  MathSciNet  Google Scholar 

  48. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables, Vol. 55, US Government printing office

  49. Churchill R, Brown J (2014) Ebook: complex variables and applications. McGraw Hill, Noida

    Google Scholar 

  50. Srivastava HM, Choi J (2011) Zeta and q-Zeta functions and associated series and integrals. Elsevier, New York

    Google Scholar 

  51. Kronenburg M (2011) The binomial coefficient for negative arguments. arXiv preprint arXiv:1105.3689

  52. Boros G, Moll V (2004) Irresistible integrals: symbolics, analysis and experiments in the evaluation of integrals. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Brazilian agencies: the National Council for Scientific and Technological Development — CNPq (Grants #131346/2020-2 and #306824/2019-1) and the São Paulo State Research Agency — FAPESP (Grants #2021/09224-5 and #2020/00326-7).

Author information

Authors and Affiliations

Authors

Contributions

GLST: Conceptualization, methodology, software, validation, writing — original draft. FDM: Conceptualization, writing — review and editing, supervision.

Corresponding author

Correspondence to George L. S. Torres.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A. Thickness problem integrals

From Eqs. (18), (17) and (42) the induced velocity by the source sheet at \(y=0\) has the form

$$\begin{aligned} u_i(x)= & {} \dfrac{\beta _0 U}{2\pi }\int _0^c \dfrac{dx_0}{\sqrt{x_0}(x-x_0)} + \dfrac{U}{\pi }\sum _{k=0}^{n-1} (k+1) \beta _{k+1} \nonumber \\{} & {} \quad \int _0^c \dfrac{x_0^k }{x-x_0}dx_0. \end{aligned}$$
(A1)

The first integral in the right-side hand in (A1) can be evaluated by the change of variable \(x_0=u_0^2\):

$$\begin{aligned} \int _0^c \dfrac{dx_0}{\sqrt{x_0}(x-x_0)}&= 2\int _0^c \dfrac{du_0}{u^2-u_0^2} \nonumber \\&= \dfrac{1}{u}\int _0^c \dfrac{du_0}{u-u_0} + \dfrac{1}{u}\int _0^c \dfrac{du_0}{u+u_0}. \end{aligned}$$
(A2)

The formula given by Brandão [47] is helpful in performing principal value integrals as the one in Eq. A2:

$$\begin{aligned} \int _a^b \dfrac{f(x_0)}{x-x_0}dx_0 = f(x) \ln {\left( \dfrac{x-a}{b-x}\right) } - \int _a^b \dfrac{f(x)-f(x_0)}{x-x_0}dx_0. \end{aligned}$$
(A3)

Thus, Eq. A2 becomes:

$$\begin{aligned} \int _0^c \dfrac{dx_0}{\sqrt{x_0}(x-x_0)} = \dfrac{1}{\sqrt{x}}\ln {\left( \dfrac{\sqrt{c}+\sqrt{x}}{\sqrt{c}-\sqrt{x}}\right) }. \end{aligned}$$
(A4)

The second integral in Eq. A1 is computed by using the identity \(x^k-x_0^k=(x-x_0)\sum _{m=1}^k x^{k-m}x_0^{m-1}\):

$$\begin{aligned} \int _0^c \dfrac{x_0^k }{x-x_0}dx_0&= x^k \ln {\left( \dfrac{x}{c-x}\right) } - \int _0^c \dfrac{x^k-x_0^k}{x-x_0}dx_0 \nonumber \\&= x^k\left[ \ln {\left( \dfrac{x}{c-x}\right) } - \sum _{m=1}^k \dfrac{(c/x)^m}{m}\right] . \end{aligned}$$
(A5)

B. Camber-slope integral evaluation

By making use of the identity \(\cos \varphi = (1/2)\left( e^{i\varphi } + e^{-i\varphi }\right)\), \(\varphi \in {\mathbb {C}}\), the integral (46) is evaluated as

$$\begin{aligned} I = -(-2)^{-(m+1)} \int _0^\pi \left( e^{i\varphi } - 2\varepsilon + e^{-i\varphi } \right) ^m \left( e^{in\varphi } + e^{-in\varphi }\right) d\varphi . \end{aligned}$$
(B6)

The change of variable \(z=e^{i\varphi }\) yields

$$\begin{aligned} I = i(-2)^{-(m+1)} \int _{C} \left( z^2 - 2\varepsilon z + 1 \right) ^m \left( z^{n-m-1} + z^{-n-m-1}\right) dz, \end{aligned}$$
(B7)

where C is the positively oriented arc of the circle \(|z|=1\), where \(\mathfrak {arg}(z)\) goes from \(\theta _i = 0\) to \(\theta _f = \pi\).

One can expand the left term in parenthesis on the integrand in a Gegenbauer series:

$$\begin{aligned} \left( z^2 - 2 \varepsilon z + 1 \right) ^m = \sum _{j=0}^\infty z^j C_{(j)}^{(-m)}(\varepsilon ), \end{aligned}$$
(B8)

where \(C^\lambda _\upsilon (x)\) are the Gegenbauer polynomials [48].

Replacing (B8) into Eq. B7 gives

$$\begin{aligned} I = i(-2)^{-(m+1)} \int _{C}f(z) dz, \end{aligned}$$
(B9)

where

$$\begin{aligned} f(z)=\sum _{j=0}^\infty \left( z^{n-m-1+j} + z^{-n-m-1+j}\right) C_{(j)}^{(-m)}(\varepsilon ). \end{aligned}$$
(B10)

By making use of the residue theory [49] and the fact that f(z) is a Laurent series with a singular point at \(z=0\), we have

$$\begin{aligned} \underset{z=0}{\text {Res}}\, f(z) = C_{(m+n)}^{(-m)}(\varepsilon ) + C_{(m-n)}^{(-m)}(\varepsilon ). \end{aligned}$$
(B11)

The \(N^\lambda _{\upsilon }(x)\) polynomials are introduced:

$$\begin{aligned} N^\lambda _{\upsilon }(x) = C_{(\lambda \pm \upsilon )}^{(-\lambda )}(x). \end{aligned}$$
(B12)

The integral in the complex plane may be evaluated as

$$\begin{aligned} \int _C f(z) dz = i(\theta _f - \theta _i)\sum \text {Res}\, f(z) = 2\pi i N^m_n(\varepsilon ). \end{aligned}$$
(B13)

In this way, (B13) is replaced into Eq. B9 to give

$$\begin{aligned} I = \pi (-2)^{-m}N^m_n(\varepsilon ). \end{aligned}$$
(B14)

C. Gegenbauer polynomials

The Gegenbauer series coefficients can be expressed as [50]

$$\begin{aligned} C_\upsilon ^\lambda (x)= & {} \left( {\begin{array}{c}\upsilon +2\lambda -1\\ \upsilon \end{array}}\right) \sum _{p=0}^\upsilon \left( {\begin{array}{c}\upsilon \\ p\end{array}}\right) \dfrac{(2\lambda + \upsilon )_p}{(\lambda +1/2)_p} \left( \dfrac{x-1}{2}\right) ^p, \nonumber \\{} & {} \quad \upsilon =0,1,2,\ldots , \quad x\in [-1,1], \end{aligned}$$
(C15)

where the Pochhammer symbol \((a)_n\) is defined by

$$\begin{aligned} (a)_n = \left\{ \begin{array}{ll} a(a+1)\cdots (a+n-1), &{} n=1,2,3,\ldots \\ 1, &{} n=0. \end{array} \right. \end{aligned}$$
(C16)

In special, we have \((1)_n=n!\).

Hence, the Gegenbauer coefficients in Eq. B12 may be written as

$$\begin{aligned} N^m_n(x)= & \, C_{(m\pm n)}^{(-m)}(x) \nonumber \\= & {} \left( {\begin{array}{c}-m\pm n-1\\ m\pm n\end{array}}\right) \sum _{p=0}^{m\pm n} \left( {\begin{array}{c}m\pm n\\ p\end{array}}\right) \dfrac{(-m\pm n)_p}{(-m+1/2)_p} \left( \dfrac{x-1}{2}\right) ^p. \end{aligned}$$
(C17)

The binomial coefficient for a negative integer k and integer n is given by [51]

$$\begin{aligned} \left( {\begin{array}{c}k\\ n\end{array}}\right) = \left\{ \begin{array}{ll} (-1)^n \left( {\begin{array}{c}-k+n-1\\ n\end{array}}\right) &{} (n\ge 0) \\ (-1)^{k-n} \left( {\begin{array}{c}-n-1\\ k-n\end{array}}\right) &{} (n\le k) \\ 0 &{} otherwise. \end{array} \right. \end{aligned}$$
(C18)

For complex \(\lambda\) and integer \(n\ge 0\), the binomial coefficient can be written as [50, 52]

$$\begin{aligned} \left( {\begin{array}{c}\lambda \\ n\end{array}}\right) = \dfrac{(\lambda - n + 1)_n}{(1)_n} = \dfrac{(-1)^n(-\lambda )_n}{n!}. \end{aligned}$$
(C19)

Furthermore, the following properties of the Pochhammer symbol are useful:

$$\begin{aligned} (\lambda )_{-n}&= \dfrac{(-1)^n}{(1-\lambda )}_n, \end{aligned}$$
(C20)
$$\begin{aligned} (\lambda )_{n+m}&= (\lambda )_{n}(\lambda +n)_{m}, \end{aligned}$$
(C21)
$$\begin{aligned} (\lambda )_{2n}&= 2^{2n}\left( \dfrac{\lambda }{2}\right) _n\left( \dfrac{1+\lambda }{2}\right) _n, \end{aligned}$$
(C22)
$$\begin{aligned} (-\lambda )_n&= \left\{ \begin{array}{ll} (-1)^n \dfrac{\lambda !}{(\lambda -n)!} &{} (0 \le n \le \lambda ) \\ 0 &{} (n > \lambda ). \end{array} \right. \end{aligned}$$
(C23)

The Pochhammer symbols in Eq. C17 need especial attention:

$$\begin{aligned} (-m\pm n)_p&\overset{(C23)}{=} \left\{ \begin{array}{ll} (-1)^p \dfrac{(m \mp n)!}{(m \mp n -p)!} \overset{(C19)}{=} (-1)^p p! \left( {\begin{array}{c}m\mp n\\ p\end{array}}\right) &{} (0 \le p \le m \mp n) \\ 0 &{} (p > m \mp n), \end{array} \right. \end{aligned}$$
(C24)
$$\begin{aligned} (-m + 1/2)_p&\overset{(23)}{=} \left\{ \begin{array}{ll} (-1)^p \dfrac{(m -1/2)!}{(m -1/2-p)!} \overset{(19)}{=} (-1)^p p! \left( {\begin{array}{c}m-1/2\\ p\end{array}}\right) &{} (0 \le p \le m -1/2) \\ 0 &{} (p > m -1/2). \end{array} \right. \end{aligned}$$
(C25)

In this way, for a non-zero value in Eq. C17 we must have \(m \ge n\) and \(p\le m-n\). Thus, the binomial coefficient exterior to the summation in Eq. C17 is

$$\begin{aligned} \left( {\begin{array}{c}-m\pm n-1\\ m\pm n\end{array}}\right)&\overset{(C19)}{=} (-1)^{m\pm n} \left( {\begin{array}{c}2m\\ m\pm n\end{array}}\right) \nonumber \\&= \dfrac{(-1)^{m + n} (2m)!}{(m + n)!(m - n)!}. \end{aligned}$$
(C26)

Then, the Gegenbauer coefficients in Eq. C17 can be written conveniently as

$$\begin{aligned} N^m_n(x) = \left\{ \begin{array}{ll} (-1)^{m + n} \left( {\begin{array}{c}2m\\ m + n\end{array}}\right) \sum _{p=0}^{m - n} \left( {\begin{array}{c}m + n\\ p\end{array}}\right) \left( {\begin{array}{c}m - n\\ p\end{array}}\right) \dfrac{p! (1-x)^p}{2^p(1/2-m)_p}, &{} 0\le n \le m; \\ 0, & \text{otherwise}. \end{array} \right. \end{aligned}$$
(C27)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, G.L.S., Marques, F.D. Nonlinear geometric decomposition of airfoils into the thickness and camber contributions. Meccanica (2024). https://doi.org/10.1007/s11012-024-01801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11012-024-01801-6

Keywords

Navigation