Skip to main content
Log in

Motion of a solid particle in a bounded viscous flow using the Sparse Cardinal Sine Decomposition

  • Recent advances in modeling and simulations of multiphase flows
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This work investigates the Sparse Cardinal Sine Decomposition (SCSD) method ability to efficiently deal with a Stokes flow about a solid particle immersed in a liquid. In contrat to Alouges and Aussal (Numer Algorithms 70:1–22, 2015), the liquid domain is bounded by a solid and motionless wall. The advocated procedure inverts on the particle and truncated wall boundaries the boundary-integral equation governing the stress there. This is numerically achieved by implementing a Galerkin method. The resulting linear system, with fully-populated and non-symmetric influence matrix, is both compressed and solved by the new SCSD method which allows to accurately deal with a large number of unknowns. Both analytical and numerical comparisons are reported for a spherical particle and several bounded liquid domains. Moreover, the rigid-body motion of spheroidal particles settling in a cylindrical tube is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Since not needed in the present work, the tensor \(\mathbf{T}^{\infty }\) is not given here although it also admits a simple analytical form (see Happel and Brenner [1]).

  2. This proof is established for the no-slip boundary condition on the wall but can fail for other boundary conditions not handled in the present paper.

  3. Note that Cunningham [3] and Williams [4] solved the problem of a translating sphere in a more complicated way, using a stream function formulation.

  4. The value \(\eta =R/a-1\) was obtained in the previous subsection for the sphere located at the cavity center, i. e. for \(O'=O.\)

  5. The motion is normalized by the volume-equivalent sphere settling velocity for the unbounded liquid case.

References

  1. Happel J, Brenner H (1965) Low Reynolds number hydrodynamics. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  2. Kim S, Karrila SJ (1991) Microhydrodynamics: principles and selected applications. Butterworth, Oxford

    Google Scholar 

  3. Cunningham E (1910) On the velocity of steady fall os spherical particles through fluid medium. Proc R Soc A 83:357–365

    ADS  MATH  Google Scholar 

  4. Williams E (1915) On the motion of a sphere in a viscous fluid. Philos Mag 6th Ser 29:526–555

    MATH  Google Scholar 

  5. O’Neill ME, Majumdar SR (1970) Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part I: the determination of exact solutions for any values of the ratio of radii and separation parameters. J Appl Math Phys 21:164–179

    MATH  Google Scholar 

  6. O’Neill ME, Majumdar SR (1970) Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part II: asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero. J Appl Math Phys 21:180–187

    MATH  Google Scholar 

  7. Jones RB (2009) Dynamics of a colloid in a spherical cavity. In: Feuillebois F, Sellier A (eds) Theoretical methods for micro scale viscous flows. Transworld research network, 1st edn. pp 61–104

  8. Pasol L, Sellier A, Feuillebois F (2009) Creeping flow around a solid sphere in the vicinity of a plane solid wall. In Feuillebois F, Sellier A (eds) Theoretical methods for micro scale viscous flows. pp 105–126

  9. Chaoui M, Feuillebois F (2003) Creeping flow around a sphere in shear flow close to a wall. Q J Mech Appl Math 56:381–410

    MathSciNet  MATH  Google Scholar 

  10. Pasol L, Chaoui M, Yahiaoui S, Feuillebois F (2005) Analytical solutions for a spherical particle near a wall in axisymmetrical polynomial creeping flows. Phys Fluids 73602.–17:73602.-1–13

    MathSciNet  MATH  Google Scholar 

  11. Pasol L, Sellier A, Feuillebois F (2006) A sphere in a second degree polynomial creeping flow parallel to a wall. Q J Mech Appl Math 59:587–614

    MathSciNet  MATH  Google Scholar 

  12. Ganatos P, Peffer R, Weibaum S (1980) A strong interaction therory for the creeping motion of a sphere between plane parallel boundaries. 1. Parallel motion. J Fluid Mech 99:739–753

    ADS  Google Scholar 

  13. Ganatos P, Peffer R, Weibaum S (1980) A strong interaction therory for the creeping motion of a sphere between plane parallel boundaries. 2. Parallel motion. J Fluid Mech 99:755–783

    ADS  Google Scholar 

  14. Wang H, Skalak R (1969) Viscous flow in a cylindrical tube containing a line of spherical particles. J Fluid Mech 38:75–96

    ADS  MATH  Google Scholar 

  15. Leichtberg S, Pfeffer R, Weinbaum S (1976) Stokes flow past finite co-axial clusters of spheres in a circular cylinder. Int J Multiphase Flow 1:147–169

    MATH  Google Scholar 

  16. Chen TC, Skalak R (1970) Stokes flow in a cylindrical tube containing a line of spheroidal particles. Appl Sci Res 22:403–441

    MATH  Google Scholar 

  17. Tozeren H (1983) Drag on eccentric spheres translating and rotating in tubes. J Fluid Mech 129:77–90

    ADS  Google Scholar 

  18. Ekiel-Jezewska ML, Wajnryb E (2009) Precise multipole method for calculating hydrodynamic interactions. In: Feuillebois F, Sellier A (eds) Theoretical methods for micro scale viscous flows. pp 127–172

  19. Cichocki B, Jones RB (1998) Image representation of a spherical particle near a hard wall. Physica A 258:273–302

    ADS  Google Scholar 

  20. Cichocki B, Jones RB, Kutteh R, Wajnryb E (2000) Friction and mobility for colloidal spheres in Stokes flow near a boundary. J Chem Phys 112(5):2548–2561

    ADS  Google Scholar 

  21. Jones RB (2004) Spherical particle in Poiseuille flow between planar walls. J Chem Phys 121(1):83–500

    Google Scholar 

  22. Bhattacharya S, Bławzdziewicz J, Wajnryb E (2005) Hydrodynamic interactions of spherical particles in suspensions confined between two planar walls. J Fluid Mech 541:263–292

    ADS  MathSciNet  MATH  Google Scholar 

  23. De Corato M, Greco F, D’Avino G, Maffettone PL (2015) Hydrodynamics and Brownian motions of a spheroid near a rigid wall. J Chem Phys 142:194901

    ADS  Google Scholar 

  24. Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Ladyshenskaya O (1969) The mathematical thoery of viscous incompressible flow. Gordon & Breach, London

    Google Scholar 

  26. Oseen CW (1927) Neure Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlagsgesellschat M. B. H

  27. Sellier A (2008) Slow viscous motion of a particle in a spherical cavity. Comput Model Eng Sci 25(3):165–180

    Google Scholar 

  28. Blake JR (1971) A note on the image system for a Stokeslet in a no-slip boundary. Proc Camb Philos Soc 70:303–310

    ADS  MATH  Google Scholar 

  29. Hsu R, Ganatos P (1989) The motion of a rigid body in viscous fluid bounded by a plane wall. J Fluid Mech 207:29–72

    ADS  MATH  Google Scholar 

  30. Hsu R R, Ganatos P (1994) Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low Reynolds number. J Fluid Mech 268:267–292

    ADS  Google Scholar 

  31. Mody NA, King MR (2005) Three-dimensional simulations of a platelet-shaped spheroid near a wall in shear flow. Phys Fluids 17:113302

    ADS  MATH  Google Scholar 

  32. Sellier A (2005) Settling motion of interacting solid particles in the vicinity of a plane solid boundary. C R Mécanique 333:413–418

    ADS  MATH  Google Scholar 

  33. Sellier A, Ghalia N (2011) Green tensor for a general non-isotropic slip condition. Comput Model Eng Sci 78(1):25–50

    MathSciNet  MATH  Google Scholar 

  34. Staben ME, Zinchenko AZ, Davis RH (2003) Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys Fluids 15(6):1711–1733

    ADS  MATH  Google Scholar 

  35. Pasol L, Sellier A (2006) Gravitational motion of a two-particle cluster between two parallel plane walls. C R Mécanique 334(2):105–110

    ADS  MATH  Google Scholar 

  36. Pasol L, Sellier A (2006) Sedimentation of a solid particle immersed in a fluid film. Comput Model Eng Sci 16(3):187–196

    Google Scholar 

  37. Liron N, Shahar R (1978) Stokes flow due to a Stokeslet in a pipe. J Fluid Mech 86:727–744

    ADS  MathSciNet  MATH  Google Scholar 

  38. Tullock DL, Phan-Thien N, Graham AL (1992) Boundary element simulations of spheres settling in circular, square and triangular conduits. Rheol Acta 31:139–150

    MATH  Google Scholar 

  39. Ilic V, Tullock DL, Phan-Thien N, Graham AL (1992) Translation an rotation of spheres settling in square and circular conduits: experiments and numerical predictions. Int J Multiphase Flow 18(6):1061–1075

    MATH  Google Scholar 

  40. Pozrikidis C (2005) Computation of Stokes flow due to the motion or presence of a particle in a tube. J Eng Math 53(1):120

    MathSciNet  MATH  Google Scholar 

  41. Higdon JJL, Muldowney GP (1995) Resistance functions for spherical particles, droplets and bubbles in cylindircal tubes. J Fluid Mech 298:193210

    Google Scholar 

  42. Zhu L, Lauga E, Brandt L (2013) Low-Reynolds-number swimming in a capillary tube. J Fluid Mech 726:285–311

    ADS  MathSciNet  MATH  Google Scholar 

  43. Alouges F, Aussal M (2015) The sparse cardinal sine decomposition and its application for fast numerical convolution. Numer Algorithms 70(2):1–22

    MathSciNet  MATH  Google Scholar 

  44. Alouges F, Aussal M, Lefebvre-Lepot A, Pigeonneau F, Sellier A (2017) Application of the sparse cardinal sine decomposition to 3D Stokes flows. Int J Comput Methods Exp Meas 5(3):387–394

    Google Scholar 

  45. Hackbusch W (1999) A sparse matrix arithmetic based on H-matrices. Part I. Introduction to H-matrices. Computing 62(2):89–108

    MathSciNet  MATH  Google Scholar 

  46. Hackbusch W (2009) Hierarchische matrizen. Springer, Berlin

    MATH  Google Scholar 

  47. Greengard L, Rokhlin V (1988) The rapid evaluation of potential fields in three dimensions lecture notes in mathematics. Springer, Berlin

    MATH  Google Scholar 

  48. Greengard L (1988) The rapid evaluation of potential fields in particle systems. MIT Press, Cambridge

    MATH  Google Scholar 

  49. Hedhili L, Sellier A, Feuillebois F (2011) Motion of small solid particles in a viscous fluid enclosed in a cavity. Comput Model Eng Sci 73(2):137–170

    MathSciNet  MATH  Google Scholar 

  50. Lee J-Y, Greengard L (2005) The type 3 nonuniform fft and its application. J Comput Phys 206:1–5

    ADS  MathSciNet  MATH  Google Scholar 

  51. Haberman WL, Sayre RM Motion of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes. David Taylor Model Basin Rep. no. 1143

  52. Brenner H, Happel J (1958) Slow viscous flow past a sphere in a cylindrical tube. J Fluid Mech 4:195–230

    ADS  MathSciNet  MATH  Google Scholar 

  53. Greenstein T, Happel J (1968) Theoretical study of the slow motion of a sphere and a fluid in a cylindrical tube. J Fluid Mech 34:705–710

    ADS  MATH  Google Scholar 

  54. Hirschfeld BR (1972) A Theoretical Study of the slow asymmetric settling of an arbitrarily-positioned particle in a circular cylinder. PhD Dissertation, New York University, New York

  55. Falade A, Brenner H (1988) First-order wall curvature effects upon the Stokes resistance of a spherical particle moving in close proximity to a solid wall. J Fluid Mech 193:533–568

    ADS  MathSciNet  MATH  Google Scholar 

  56. Happel J, Bart E (1974) The settling of a sphere along the axis of a long square duct at low Reynolds number. Appl Sci Res 29:241–258

    MATH  Google Scholar 

  57. Mitchell WH, Spagnolie SE (2015) Sedimentation of spheroidal bodies near walls in viscous fluids: glancing, reversing, tumbling and sliding. J Fluid Mech 772:600–629

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was funded by the Saint-Gobain Recherche Compagny. The authors are grateful to the Saint-Gobain Recherche Compagny for this financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Alouges.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The flow \((\mathbf{u},p)\) is obtained by superposing a few singularities placed at the sphere center \(O'=O.\) Setting \(r=|\mathbf{x}|,\)\(\mathbf{u}\) and p are sought in the following forms

$$\begin{aligned} \mathbf{u}= & {} {{\varvec{s}}\over {r}}+{{(\varvec{s}.\mathbf{x})\mathbf{x}}\over {r^3}} +3{{(\mathbf{d}.\mathbf{x})\mathbf{x}}\over {r^5}}-{{\mathbf{d}}\over {r^3}} +{{\varvec{\gamma }\wedge \mathbf{x}}\over {r^3}}+\mathbf{c}\nonumber \\&+\,\varvec{{\omega }}\wedge \mathbf{x}+2r^2\varvec{S}-(\varvec{S}.\mathbf{x})\mathbf{x} {\text{ for }} {a\le r\le R,} \end{aligned}$$
(38)
$$\begin{aligned} p= & {} 2\mu \left\{5\varvec{S}.\mathbf{x}+{{\varvec{s}.\mathbf{x}}\over {r^3}}\right\} {\text{ for }} {a\le r\le R.} \end{aligned}$$
(39)

Hence, \((\mathbf{u},p)\) consists of a rigid-body motion \(\mathbf{c}+\varvec{{\omega }}\wedge \mathbf{x}\) and of four flows induced by singularties located at the sphere center: a Stokeslet with intensity \(\mathbf{s},\) a potential dipole with intensity \(\mathbf{d},\) a rotlet with intensity \(\varvec{\gamma }\) and a Stokeson with intensity \({\varvec{S}}.\) The unknown vectors \(\mathbf{c}, \varvec{{\omega }}, \varvec{s}, \mathbf{d}, \varvec{\gamma }\) and \(\varvec{S}\) are obtained by enforcing the no-slip boundary conditions \(\mathbf{u}=\mathbf{0}\) on the \(r=R\) cavity and \(\mathbf{u}=\mathbf{U}+\varvec{\varOmega }\wedge \mathbf{x}\) on the \(r=a\) sphere surface. The following linear equations are obtained

$$\begin{aligned} \varvec{S}-{{\varvec{s}}\over {R^3}}-3{{\mathbf{d}}\over {R^5}}= & {} \mathbf{0}, 2R^2\varvec{S}+\mathbf{c}+{{\varvec{s}}\over {R}}-{{\mathbf{d}}\over {R^3}}=\mathbf{0}, \end{aligned}$$
(40)
$$\begin{aligned} \varvec{S}-{{\varvec{s}}\over {a^3}}-3{{\mathbf{d}}\over {a^5}}= & {} \mathbf{0}, {{\varvec{s}}\over {a}}-{{\mathbf{d}}\over {a^3}}+\mathbf{c}+2a^2\varvec{S}=\mathbf{U}, \end{aligned}$$
(41)
$$\begin{aligned} \varvec{{\omega }}+{{\varvec{\gamma }}\over {R^3}}= & {} \mathbf{0},{{\varvec{\gamma }}\over {a^3}}+\varvec{{\omega }}=\varvec{\varOmega }. \end{aligned}$$
(42)

Setting \(\lambda =a/R,\) elementary algebra easily yields the analytical solution

$$\begin{aligned}&\varvec{s}={{3a(1-\lambda ^5)\mathbf{U}}\over {4[1-{{9}\over {4}}\lambda +{{5}\over {2}}\lambda ^3-{{9}\over {4}}\lambda ^5+\lambda ^6]}}, \end{aligned}$$
(43)
$$\begin{aligned}&\mathbf{d}={{(1-\lambda ^3)a ^2\varvec{s}}\over {3(\lambda ^5-1)}}, \mathbf{c}={{(4+5\lambda ^3-9\lambda ^5)\varvec{s}}\over {3a(\lambda ^5-1)}}+\mathbf{U}, \end{aligned}$$
(44)
$$\begin{aligned}&\varvec{\gamma }={{a^3\varvec{\varOmega }}\over {1-\beta ^3}}, \varvec{{\omega }}=-{{\lambda ^3\varvec{\varOmega }}\over {a^3}}, \varvec{S}={{\lambda (\lambda ^2-1)\varvec{s}}\over {aR^2(\lambda ^5-1)}} . \end{aligned}$$
(45)

From (38) the sphere experiences a force \(\mathbf{F}\) and a torque \({\varvec{\Gamma }}\) (about its center \(O')\) given by \(\mathbf{F}=-8\pi \mu \varvec{s}\) and \({\varvec{\Gamma }}=-8\pi \mu \varvec{\gamma }.\) Accordingly, one gets the announced results (31)–(32).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alouges, F., Lefebvre-Lepot, A. & Sellier, A. Motion of a solid particle in a bounded viscous flow using the Sparse Cardinal Sine Decomposition. Meccanica 55, 403–419 (2020). https://doi.org/10.1007/s11012-019-00993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-00993-6

Keywords

Navigation