Skip to main content
Log in

Size effect on cracked functional composite micro-plates by an XIGA-based effective approach

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Failure of structures and their components is one of major problems in engineering. Studies on mechanical behavior of functionally graded (FG) microplates with defects or cracks by effective numerical methods are rarely reported in literature. In this paper, an effective numerical model is derived based on extended isogeometric analysis (XIGA) for assessment of vibration and buckling of FG microplates with cracks. Based on the modified couple stress theory, the non-classical theory of Reissner–Mindlin plate is extended to capture microstructure, and thus, the size effect. In such theory, possessing C1-continuity is straightforward with the high-order continuity of non-uniform rational B-spline. Due to the use of enrichments in XIGA, crack geometry is independent of the computational mesh. Numerical examples are performed to illustrate the effects of microplate aspect ratio, crack length, internal material length scale parameter, material distribution, and boundary condition on the mechanical responses of cracked FG microplates. The obtained results are compared with reference solutions and that shows that the frequency and buckling loads increases with decreasing the size of FG microplates and crack length. The convergence of the present method is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jha DK, Kant T, Singh RK (2013) A critical review of recent research on functionally graded plates. Compos Struct 96:833–849

    Article  Google Scholar 

  2. Stolken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115

    Article  Google Scholar 

  3. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  4. Ansari R, Gholami R (2016) Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory. Compos Part B 95:301–316

    Article  Google Scholar 

  5. Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41(12):1825–1857

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Zhang B, He YM, Liu DB, Lei J, Shen L, Wang L (2015) A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates. Compos Part B 79:553–580

    Article  Google Scholar 

  7. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  9. Tsiatas GC (2009) A new Kirchhoff plate model based on a modified couple stress theory. Int J Solids Struct 46(13):2757–2764

    Article  MATH  Google Scholar 

  10. Yin L, Qian Q, Wang L, Xia W (2010) Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech Solida Sin 23(5):386–393

    Article  Google Scholar 

  11. Jomehzadeh E, Noori HR, Saidi AR (2011) The size-dependent vibration analysis of micro plates based on a modified couple stress theory. Physica E Low Dimens Syst Nanostruct 43(4):877–883

    Article  ADS  Google Scholar 

  12. Ma HM, Gao XL, Reddy JN (2011) A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech 220(1–4):217–235

    Article  MATH  Google Scholar 

  13. Ke LL, Wang YS, Yang J, Kitipornchai S (2012) Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J Sound Vib 331(1):94–106

    Article  ADS  Google Scholar 

  14. Zhou SS, Gao XL (2014) A nonclassical model for circular Mindlin plates based on a modified couple stress theory. Int J Appl Mech 25(81):051014

    Article  Google Scholar 

  15. Thai HT, Vo TP (2013) A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory. Compos Struct 96:376–383

    Article  Google Scholar 

  16. Trinh LC, Vo TP, Thai H-T, Mantari JL (2017) Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads. Compos Part B 124:218–241

    Article  Google Scholar 

  17. Thai HT, Kim SE (2013) A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos Part B 45:1636–1645

    Article  Google Scholar 

  18. Ke LL, Yang J, Kitipornchai S, Bradford MA, Wang YS (2013) Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates. Compos Part B 53:207–217

    Article  Google Scholar 

  19. Thai HT, Choi DH (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 95:142–153

    Article  Google Scholar 

  20. Gao XL, Huang JX, Reddy JN (2013) A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech 224(11):2699–2718

    Article  MathSciNet  MATH  Google Scholar 

  21. Shaat M, Mahmoud FF, Gao XL, Faheem AF (2014) Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int J Mech Sci 79(1):31–37

    Article  Google Scholar 

  22. Zhang GY, Gao XL, Wang JZ (2015) A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech 226(12):4073–4085

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao XL, Zhang GY (2016) A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Continuum Mech Thermodyn 28(1):195–213

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Yin SH, Yu TT, Bui TQ, Liu P, Hirose S (2016) Buckling and vibration extended isogeometric analysis of imperfect graded Reissner–Mindlin plates with internal defects using NURBS and level sets. Comput Struct 177:23–38

    Article  Google Scholar 

  26. Yin SH, Yu TT, Bui QT, Nguyen NM (2015) Geometrically nonlinear analysis of functionally graded plates using isogeometric analysis. Eng Comput 32:519–558

    Article  Google Scholar 

  27. Yin SH, Yu TT, Bui QT, Zheng XJ, Tanaka S (2016) In-plane material inhomogeneity of functionally graded plates: a higher-order shear deformation plate isogeometric analysis. Compos Part B: Eng 106:273–284

    Article  Google Scholar 

  28. Bui TQ (2015) Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Comput Methods Appl Mech Eng 295:470–509

    Article  ADS  MathSciNet  Google Scholar 

  29. Yu TT, Yin SH, Bui QT, Xia SF, Tanaka S, Hirose S (2016) NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin-Walled Struct 101:141–156

    Article  Google Scholar 

  30. Fantuzzi N, Tornabene F (2016) Strong formulation isogeometric analysis (SFIGA) for laminated composite arbitrarily shaped plates. Compos Part B Eng 96:173–203

    Article  Google Scholar 

  31. Yu TT, Bui TQ, Yin SH, Do TV, Tanaka S, Doan DH (2016) On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis. Compos Struct 136:684–695

    Article  Google Scholar 

  32. Yu TT, Yin SH, Bui TQ, Liu Ch, Wattanasakulpong N (2017) Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads. Compos Struct 162:54–69

    Article  Google Scholar 

  33. Lezgy-Narargah M, Vidal P, Polit O (2015) NURBS-based isogeometric analysis of laminated composite beams using refined sinus model. Eur J Mech A Solids 53:34–47

    Article  MathSciNet  Google Scholar 

  34. Lei Z, Gillot F, Jezequel L (2015) Development of the mixed grid isogeometric Reissner–Minlin shell: serendipity basis and modified reduced quadrature. Eur J Mech A Solids 54:105–119

    Article  MathSciNet  Google Scholar 

  35. Natarajan S, Chakraborty S, Thangavel M, Bordas S, Rabczuk T (2012) Size-dependent free flexural vibration behavior of functionally graded nanoplates. Comput Mater Sci 65:74–80

    Article  Google Scholar 

  36. Ansari R, Norouzzadeh A (2016) Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: an isogeometric analysis. Physica E 84:84–97

    Article  ADS  Google Scholar 

  37. Thai S, Thai HT, Vo TP, Patel VI (2017) Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis. Comput Struct 190:219–241

    Article  Google Scholar 

  38. Liu S, Yu TT, Bui TQ, Xia SF (2017) Size-dependent analysis of homogeneous and functionally graded microplates using IGA and a non-classical Kirchhoff plate theory. Compos Struct 172:34–44

    Article  Google Scholar 

  39. Liu S, Yu TT, Bui TQ (2017) Size effects of functionally graded microplates: a novel non-classical simple-FSDT isogeometric analysis. Eur J Mech A Solids 66:446–458

    Article  MathSciNet  Google Scholar 

  40. Gupta A, Jain NK, Salhotra R, Joshi PV (2015) Effect of microstructure on vibration characteristics of partially cracked rectangular plates based on a modified couple stress theory. Int J Mech Sci 100:269–282

    Article  Google Scholar 

  41. Joshi PV, Gupta A, Jain NK, Salhotra R, Rawani AM, Ramtekkar GD (2017) Effect of thermal environment on free vibration and buckling of partially cracked isotropic and FGM micro plates based on a non classical Kirchhoff’s plate theory: an analytical approach. Int J Mech Sci 131–132:155–170

    Article  Google Scholar 

  42. Huang CS, McGee OG III, Chang MJ (2011) Vibrations of cracked rectangular FGM thick plates. Compos Struct 93(7):1747–1764

    Article  Google Scholar 

  43. Natarajan S, Baiz PM, Bordas S, Rabczuk T, Kerfriden P (2011) Natural frequencies of cracked functionally graded material plates by the extended finite element method. Compos Struct 93:3082–3092

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0496), Fundamental Research Funds for the Central Universities (Grant No. 2017B711X14), Natural Science Foundation of Hunan Province of China (2017JJ3306), Foundation of the Education Department of Hunan Province of China (17C1532), and Research Foundation of Xiangtan University (16QDZ15). The financial supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiantang Yu or Tinh Quoc Bui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A

To compute the stiffness matrices for elements enriched by the near tip asymptotic functions, the two-order derivatives of near tip asymptotic functions with respect to the global coordinate are determined. The crack-tip branch functions for the transverse normal rotations in the xz and yz planes of mid-plane are given as follows (Fig. 17):

$$\left[ {F_{l} \left( {r,\theta } \right),l = 1, \ldots ,4} \right] = \sqrt r \left[ {\begin{array}{*{20}c} {\sin \left( {\frac{\theta }{2}} \right)} & {\cos \left( {\frac{\theta }{2}} \right)} & {\sin \left( {\frac{\theta }{2}} \right)\sin \left( \theta \right)} & {\cos \left( {\frac{\theta }{2}} \right)\sin \left( \theta \right)} \\ \end{array} } \right]$$
(A.1)
Fig. 17
figure 17

Global coordinate system and local coordinate system

The second-order derivatives of \(F_{l} \left( {r,\theta } \right)\) with respect to the local crack tip coordinate system (x1; x2) shown in Fig. 17 are given by:

$$\left\{ \begin{aligned} & {\frac{{\partial^{2} F_{1} }}{{\partial x_{1}^{2} }} = \frac{1}{{4\sqrt {r^{3} } }}\sin \frac{3\theta }{2}} \\ & {\frac{{\partial^{2} F_{1} }}{{\partial x_{2}^{2} }} = - \frac{1}{{4\sqrt {r^{3} } }}\sin \frac{3\theta }{2}} \\ & \frac{{\partial^{2} F_{1} }}{{\partial x_{1} \partial x_{2} }} = - \frac{1}{{4\sqrt {r^{3} } }}\cos \frac{3\theta }{2} \end{aligned} \right.$$
(A.2)
$$\left\{ \begin{aligned} & {\frac{{\partial^{2} F_{2} }}{{\partial x_{1}^{2} }} = - \frac{1}{{4\sqrt {r^{3} } }}\cos \frac{3\theta }{2}} \\ & {\frac{{\partial^{2} F_{2} }}{{\partial x_{2}^{2} }} = \frac{1}{{4\sqrt {r^{3} } }}\cos \frac{3\theta }{2}} \\ & \frac{{\partial^{2} F_{2} }}{{\partial x_{1} \partial x_{2} }} = - \frac{1}{{4\sqrt {r^{3} } }}\sin \frac{3\theta }{2} \end{aligned} \right.$$
(A.3)
$$\left\{ \begin{aligned} \frac{{\partial^{2} F_{3} }}{{\partial x_{1}^{2} }} = \frac{1}{{4\sqrt {r^{3} } }}\sin \frac{3\theta }{2}\sin \theta \cos \theta + \frac{1}{{2\sqrt {r^{3} } }}\sin \theta \left( {\frac{3}{2}\cos \frac{3\theta }{2}\sin \theta + \sin \frac{3\theta }{2}\cos \theta } \right) \hfill \\ \frac{{\partial^{2} F_{3} }}{{\partial x_{2}^{2} }} = - \frac{1}{{4\sqrt {r^{3} } }}\sin \theta \left( {\sin \frac{3\theta }{2}\cos \theta + \sin \frac{\theta }{2}} \right) + \frac{1}{{2\sqrt {r^{3} } }}\cos \theta \left( {\frac{1}{2}\cos \frac{\theta }{2} + \frac{3}{2}\cos \frac{3\theta }{2}\cos \theta - \sin \frac{3\theta }{2}\sin \theta } \right) \hfill \\ \frac{{\partial^{2} F_{3} }}{{\partial x_{1} \partial x_{2} }} = \frac{1}{{4\sqrt {r^{3} } }}\sin \frac{3\theta }{2}\sin \theta \sin \theta - \frac{1}{{2\sqrt {r^{3} } }}\cos \theta \left( {\frac{3}{2}\cos \frac{3\theta }{2}\sin \theta + \sin \frac{3\theta }{2}\cos \theta } \right) \hfill \\ \end{aligned} \right.$$
(A.4)
$$\left\{ \begin{aligned} \frac{{\partial^{2} F_{4} }}{{\partial x_{1}^{2} }} = \frac{1}{{4\sqrt {r^{3} } }}\cos \frac{3\theta }{2}\sin \theta \cos \theta + \frac{1}{{2\sqrt {r^{3} } }}\sin \theta \left( {\cos \frac{3\theta }{2}\cos \theta - \frac{3}{2}\sin \frac{3\theta }{2}\sin \theta } \right) \hfill \\ \frac{{\partial^{2} F_{4} }}{{\partial x_{2}^{2} }} = - \frac{1}{{4\sqrt {r^{3} } }}\sin \theta \left( {\cos \frac{3\theta }{2}\cos \theta + \cos \frac{\theta }{2}} \right) - \frac{1}{{2\sqrt {r^{3} } }}\cos \theta \left( {\frac{1}{2}\sin \frac{\theta }{2} + \frac{3}{2}\sin \frac{3\theta }{2}\cos \theta - \cos \frac{3\theta }{2}\sin \theta } \right) \hfill \\ \frac{{\partial^{2} F_{4} }}{{\partial x_{1} \partial x_{2} }} = \frac{1}{{4\sqrt {r^{3} } }}\cos \frac{3\theta }{2}\sin \theta \sin \theta + \frac{1}{{2\sqrt {r^{3} } }}\cos \theta \left( {\frac{3}{2}\sin \frac{3\theta }{2}\sin \theta - \cos \frac{3\theta }{2}\cos \theta } \right) \hfill \\ \end{aligned} \right.$$
(A.5)

Using a vector transformation, the second-order derivatives of \(F_{l} \left( {r,\theta } \right)\) with respect to the global coordinate system are given by:

$$\left\{ \begin{aligned} \begin{array}{*{20}c} {\frac{{\partial^{2} F_{\alpha } }}{{\partial x^{2} }} = \frac{{\partial^{2} F_{\alpha } }}{{\partial x_{1}^{2} }}\cos^{2} \beta - \frac{{\partial^{2} F_{\alpha } }}{{\partial x_{1} \partial x_{2} }}\sin 2\beta + \frac{{\partial^{2} F_{\alpha } }}{{\partial x_{2}^{2} }}\sin^{2} \beta } \\ {\frac{{\partial^{2} F_{\alpha } }}{{\partial y^{2} }} = \frac{{\partial^{2} F_{\alpha } }}{{\partial x_{1}^{2} }}\sin^{2} \beta + \frac{{\partial^{2} F_{\alpha } }}{{\partial x_{1} \partial x_{2} }}\sin 2\beta + \frac{{\partial^{2} F_{\alpha } }}{{\partial x_{2}^{2} }}\cos^{2} \beta } \\ \end{array} \hfill \\ \frac{{\partial^{2} F_{\alpha } }}{\partial x\partial y} = \frac{1}{2}\sin 2\beta \left( {\frac{{\partial^{2} F_{\alpha } }}{{\partial x_{1}^{2} }} - \frac{{\partial^{2} F_{\alpha } }}{{\partial x_{2}^{2} }}} \right) + \cos 2\beta \frac{{\partial^{2} F_{\alpha } }}{{\partial x_{1} \partial x_{2} }} \hfill \\ \end{aligned} \right.$$
(A.6)

Appendix B

The crack-tip branch functions for the mid-plane displacement components in the x, y, and z directions are expressed as follows:

$$\left[ {G_{l} \left( {r,\theta } \right),l = 1, \ldots ,4} \right] = r^{{\frac{3}{2}}} \left[ {\begin{array}{*{20}c} {{ \sin }\left( {\frac{\theta }{2}} \right)} & {\cos \left( {\frac{\theta }{2}} \right)} & {\sin \left( {\frac{3\theta }{2}} \right)} & {\cos \left( {\frac{3\theta }{2}} \right)} \\ \end{array} } \right]$$
(B.1)

The second-order derivatives of \(G_{l} \left( {r,\theta } \right)\) with respect to the local crack tip coordinate system (x1; x2) shown in Fig. 17 are given by:

$$\left\{ \begin{aligned} \frac{{\partial^{2} G_{1} }}{{\partial x_{1}^{2} }} = \frac{1}{2\sqrt r }\sin \frac{\theta }{2}\cos \theta \left( {\cos \theta - \frac{1}{2}} \right) - \frac{1}{\sqrt r }\sin \theta \left( {\frac{1}{2}\cos \frac{\theta }{2}\cos \theta - \sin \frac{\theta }{2}\sin \theta - \frac{1}{4}\cos \frac{\theta }{2}} \right) \hfill \\ \frac{{\partial^{2} G_{1} }}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} = \frac{1}{2\sqrt r }\sin \frac{\theta }{2}\sin \theta \left( {\cos \theta - \frac{1}{2}} \right) + \frac{1}{\sqrt r }\cos \theta \left( {\frac{1}{2}\cos \frac{\theta }{2}\cos \theta - \sin \frac{\theta }{2}\sin \theta - \frac{1}{4}\cos \frac{\theta }{2}} \right) \hfill \\ \frac{{\partial^{2} G_{1} }}{{\partial x_{2}^{2} }} = \frac{1}{2\sqrt r }\sin \theta \left( {\sin \frac{\theta }{2}\sin \theta + \frac{1}{2}\cos \frac{\theta }{2}} \right) + \frac{1}{\sqrt r }\cos \theta \left( {\cos \theta \sin \frac{\theta }{2} + \frac{1}{2}\sin \theta \cos \frac{\theta }{2} - \frac{1}{4}\sin \frac{\theta }{2}} \right) \hfill \\ \end{aligned} \right.$$
(B.2)
$$\left\{ \begin{aligned} \frac{{\partial^{2} G_{2} }}{{\partial x_{1}^{2} }} = \frac{1}{2\sqrt r }\cos \frac{\theta }{2}\cos \theta \left( {\cos \theta + \frac{1}{2}} \right) + \frac{1}{\sqrt r }\sin \theta \left( {\frac{1}{2}\sin \frac{\theta }{2}\cos \theta + \cos \frac{\theta }{2}\sin \theta + \frac{1}{4}\sin \frac{\theta }{2}} \right) \hfill \\ \frac{{\partial^{2} G_{2} }}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} = \frac{1}{2\sqrt r }\cos \frac{\theta }{2}\sin \theta \left( {\cos \theta + \frac{1}{2}} \right) - \frac{1}{\sqrt r }\cos \theta \left( {\frac{1}{2}\sin \frac{\theta }{2}\cos \theta + \cos \frac{\theta }{2}\sin \theta + \frac{1}{4}\sin \frac{\theta }{2}} \right) \hfill \\ \frac{{\partial^{2} G_{2} }}{{\partial x_{2}^{2} }} = \frac{1}{2\sqrt r }\sin \theta \left( {\sin \frac{\theta }{2}\sin \theta + \frac{1}{2}\cos \frac{\theta }{2}} \right) + \frac{1}{\sqrt r }\cos \theta \left( {\cos \theta \sin \frac{\theta }{2} + \frac{1}{2}\sin \theta \cos \frac{\theta }{2} - \frac{1}{4}\sin \frac{\theta }{2}} \right) \hfill \\ \end{aligned} \right.$$
(B.3)
$$\left\{ \begin{aligned} \frac{{\partial^{2} G_{3} }}{{\partial x_{1}^{2} }} = - \frac{3}{4\sqrt r }\sin \frac{\theta }{2} \hfill \\ \frac{{\partial^{2} G_{3} }}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} = \frac{3}{4\sqrt r }\cos \frac{\theta }{2} \hfill \\ \frac{{\partial^{2} G_{3} }}{{\partial x_{2}^{2} }} = \frac{3}{4\sqrt r }\sin \frac{\theta }{2} \hfill \\ \end{aligned} \right.$$
(B.4)
$$\left\{ \begin{aligned} \frac{{\partial^{2} G_{4} }}{{\partial x_{1}^{2} }} = \frac{3}{4\sqrt r }\cos \frac{\theta }{2} \hfill \\ \frac{{\partial^{2} G_{4} }}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} = \frac{3}{4\sqrt r }\sin \frac{\theta }{2} \hfill \\ \frac{{\partial^{2} G_{4} }}{{\partial x_{2}^{2} }} = - \frac{3}{4\sqrt r }\cos \frac{\theta }{2} \hfill \\ \end{aligned} \right.$$
(B.5)

Using a vector transformation, the second-order derivatives of \(G_{l} \left( {r,\theta } \right)\) with respect to the global coordinate system are obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yu, T., Van Lich, L. et al. Size effect on cracked functional composite micro-plates by an XIGA-based effective approach. Meccanica 53, 2637–2658 (2018). https://doi.org/10.1007/s11012-018-0848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0848-9

Keywords

Navigation