Skip to main content

Advertisement

Log in

Circuit implementation of a piezoelectric buckled beam and its response under fractional components considerations

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, an analog testing circuit and determinist averaging method for a vibration energy harvesting system with fractional derivative and nonlinear damping under a sinusoidal vibration source is proposed in order to predict the system response and its stability. The objective of this paper is to show that there is a possibility to make a pre-experimental design of the structure by using analog circuit and discussing the performance of a system with fractional derivative. Bifurcation diagram, poincaré maps and power spectral density are provided to deeply characterize the dynamic of the system. These results are corroborated by using 0–1 test. By using the Melnikov method, we find the necessary condition for which homoclinic bifurcation occurs. Understanding and predicting this bifurcation is very judicious in the energy harvesting field because it may lead to different types of motion in the perturbed system. The appearance of chaotic vibrations increases the frequency’s bandwidth of the harvester thereby, allowing to harvest more energy. The pre-experimental investigation is carried out through appropriate software electronic circuit (Multisim®). The corresponding electronic circuit is designed exhibiting transient to chaos in accord with numerical simulations. The impact of fractional derivatives is presented upon the power generated by the system. In addition, by combining the harmonic force and a random excitation, the stochastic resonance appears, giving rise to large amplitude of vibration and consequently, enhancing the performance of the system. The results obtained in this work show the interest of using the electronic circuit to make the experiment analysis of the physical structure and also, the effects of the use of piezoelectric material exhibiting fractional properties in this research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lokenath D (2004) A brief historical introduction to fractional calculus. Int J Math Educ Sci Technol 35(4):487–501

    Article  MathSciNet  Google Scholar 

  2. Tenreiro JAM, Kiryakova V, Mainardi F (2010) A poster aboul the old history of fractional calculus. Fract Calc Appl Anal 13(4):447–154

    MathSciNet  MATH  Google Scholar 

  3. Tenreiro Machado JA, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Vazquez L (2011) From Newton’s equation to fractional diffusion and wave equations. Adv Differ Equ Art ID 169421:1–13

    MATH  Google Scholar 

  5. Stiassnie M (1979) On the application of fractional calculus for formulation of viscoelastic models. Appl Math Model 3:300–302

    Article  MATH  Google Scholar 

  6. Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11:1335–1342

    Article  Google Scholar 

  7. Yin ZP, Haule K, Kotliar G (2012) Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: insights from first-principles calculations. Phys Rev B 86(1–9):195141

    Article  ADS  Google Scholar 

  8. Debnath L (2003) Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 54:3413–3442

    Article  MathSciNet  MATH  Google Scholar 

  9. Agrawal O (2004) Application of fractional derivatives in thermal analysis. Nonlinear Dyn 38:191–206

    Article  MATH  Google Scholar 

  10. Silva MF, Machado JAT (2006) Fractional order PDa joint control of legged robots. J Vib Control 12(12):1483–1501

    Article  MathSciNet  MATH  Google Scholar 

  11. Maolin D, Zaihua W, Haiyan H (2013) Measuring memory with the order of fractional derivative. Sci Rep 3(3431):1–3

    Google Scholar 

  12. Yanzhu Z (2011) Fractional-order PID controller tuning based on genetic algorithm. In: IEEE 2011 international conference on business management and electronic information (BMEI), vol 3, pp 764–767

  13. Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. Trans ASME J Appl Mech 51(2):299–307

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu SH (1985) Fractal model for the ac response of a rough interface. Phys Rev Lett 55:529

    Article  ADS  Google Scholar 

  15. Zhang B, Ducharne B, Guyomar D, Sebald G (2013) Energy harvesting based on piezoelectric Ericsson cycles in a piezoceramic material. Eur Phys J Spec Top 222(7):1733–1743

    Article  Google Scholar 

  16. Bikram B, Hanna C, Karthik J, Jangho C, David GC, Lane WM, William PK (2016) High power density pyroelectric energy conversion in nanometer-thick \(\text{ BaTiO }_{3}\) films. Nanoscale Microscale Thermophys Eng 20(3–4):137–146

    Google Scholar 

  17. Sebald GPS, Guyomar D (2008) Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater Struct 17(1–6):015012

    Article  ADS  Google Scholar 

  18. Dan L, Junyi C, Shengxi Z, Yangquan C (2015) Fractional order model of broadband piezoelectric energy harvesters. In: IEEE international conference on mechatronic and embedded systems and applications, Boston, MA, USA, August 2–5, DETC2015-46192, V009T07A019 (1–6)

  19. Junyi C, Shengxi Z, Daniel JI, Chen Yangquan (2014) Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn 80(4):1–15

    Google Scholar 

  20. Junyi C, Arkadiusz S, Grzegorz L, Shengxi Z, Daniel JI, Yangquan C (2015) Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur Phys J Plus 130:103

    Article  Google Scholar 

  21. Cottone F, Gammaitoni L, Vocca H, Ferrari M, Ferrari V (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21:035021

    Article  ADS  Google Scholar 

  22. Arturo B, Claudia C, Luigi F, Mattia F, Julien CS (2016) Nonideal behavior of analog multipliers for chaos generation. IEEE Trans Circuits Syst II Express Briefs 63(4):396–400

    Article  Google Scholar 

  23. Scholliers J, Yli-Pietil T (1995) Simulation of mechatronic systems using analog circuit simulation tools. In: Proceeding of IEEE international conference on robotics and automation, pp 2847–2852

  24. Chedjou JC, Fotsin HB, Woafo P, Domngang S (2001) Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator. IEEE Trans Circuits Syst I Fundam Theory Appl 48(6):748–757

    Article  MATH  Google Scholar 

  25. Mokem FIS, Nono DBC, Siewe SM, Tchawoua C (2016) Probabilistic behavior analysis of a sandwiched buckled beam under Gaussian white noise with energy harvesting perspectives. Chaos Solitons Fractals 92:101–114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Mokem FIS, Nono DBC, Siewe SM, Tchawoua C (2017) Nonlinear analysis and analog simulation of a piezoelectric buckled beam with fractional derivative. Eur Phys J Plus 132:344

    Article  Google Scholar 

  27. Kumar GS, Prasad G (1993) Piezoelectric relaxation in polymer and ferroelectric composites. J Mater Sci 28(9):2545–2550

    Article  ADS  Google Scholar 

  28. Machado JAT, Silva MF, Barbosa RS et al (2010) Some applications of fractional calculus in engineering. Math Probl Eng 2010:639801

    MATH  Google Scholar 

  29. Westerlund S, Ekstam L (1994) Capacitor theory. IEEE Trans Dielectr Electr Insul 1:826–839

    Article  Google Scholar 

  30. Machado JAT, Silva MF, Barbosa RS, Jesus IS, Reis CM, Marcos MG, Galhano AF (2010) Some applications of fractional calculus in engineering. Math Probl Eng ID 639801:1–34

    MATH  Google Scholar 

  31. Gottwald GA, Melbourne I (2009) On the implementation of the 0–1 test for chaos. SIAM J Appl Dyn Syst 8:129–145

    Article  MathSciNet  MATH  Google Scholar 

  32. Gottwald GA, Melbourne I (2009) On the validity of the 0–1 test for chaos. Nonlinearity 22:1367

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Syta A, Litak G, Lenci S, Scheffler M (2014) Chaotic vibrations of the duffing system with fractional damping. Chaos Int J Nonlinear Sci 24:013107

    Article  MathSciNet  MATH  Google Scholar 

  34. Syta A, Bowen CR, Kim HA, Rysak A, Litak G (2015) Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50:1961–1970

    Article  Google Scholar 

  35. Grzegorz L, Michael IFr, Sondipon A (2015) Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51(5):1017–1025

    MathSciNet  MATH  Google Scholar 

  36. Petras I (2010) Fractional-order nonlinear systems: modeling, analysis and simulation. Springer, New York

    MATH  Google Scholar 

  37. Shantanu D (2011) Functional fractional calculus. Springer, Berlin

    MATH  Google Scholar 

  38. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  39. Jordan DW, Smith P (2007) Nonlinear ordinary differential equations: an introduction for scientists and engineers. Oxford University Press, New York

    MATH  Google Scholar 

  40. Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems, 2nd edn. Springer, NewYork

    MATH  Google Scholar 

  41. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  42. Caponetto R, Dongola R, Fortuna L, Petras I (2010) Fractional-order nonlinear systems: modeling, analysis and simulation. World Scientific Series on Nonlinear Science Series A

  43. Leung A, Yang H, Guo Z (2012) The residue harmonic balance for fractional order van der Pol like oscillators. J Sound Vib 331:1115–1126

    Article  ADS  Google Scholar 

  44. Xiao M, Zheng WX, Cao J (2013) Approximate expressions of a fractional order van der Pol oscillator by the residue harmonic balance method. Math Comput Simul 89:1–12

    Article  MathSciNet  Google Scholar 

  45. D’Azzo JJ, Houpis CH (1995) Linear control system analysis and design: conventional and modern. McGraw-Hill, New York

    MATH  Google Scholar 

  46. Mantegna RN, Spagnolo B, Testa L, Trapanese M (2005) Stochastic resonance in magnetic systems described by Preisach hysteresis model. Physics 97(1—-3):10E519

    Google Scholar 

  47. Yang JH, Miguel AFS, Liu HG, Litak G, Li X (2016) Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system. Commun Nonlinear Sci Numer Simul 41:104–17

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Mokem Fokou.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Appendix: Analog circuit for the energy harvester

Appendix: Analog circuit for the energy harvester

In order to build an analog circuit of Eq. (10), first write it in the form:

$$\begin{aligned} x^{\prime }&=u \nonumber \\ {u^{\prime }}&=\alpha {x^{3}}-{\mu }_{{2}}{ux^{2}}{-\eta }_{{2}}{y} \nonumber \\& \quad -\,{\omega }_{{0}}x-{\mu }_{{1}}{u}-{\sigma u}+F_{0}\cos \left( \varOmega \,\tau \right) \nonumber \\ y^{\prime }&=-\,{\omega }_{{e}}y+{\eta }_{{3}}{u}\, \end{aligned}$$
(75)

Without loss of generality, \(\cos \left( \varOmega \,\tau \right) \) is replaced by \(\sin \left( \varOmega \,\tau \right) \) since such a change will not affect the qualitative behavior of the system and it is conventional to denote the external sinusoidal force in an electronic circuit as \(\sin \left( \varOmega \,\tau \right) \). The integration of Eq. (75) gives rise to the following system:

$$\begin{aligned} x&=\int ud \tau \nonumber \\ {u}&=\int (\alpha {x^{3}}-{\mu }_{{2}}{ux^{2}}{-\eta }_{{2}}{y} \nonumber \\& \quad -\,{\omega }_{{0}}x-{\mu }_{{1}}{u}-{\sigma u}+F_{0}\cos \left( \varOmega \,\tau \right) )d\tau \nonumber \\ y&=\int \left( -{\omega }_{{e}}y+{\eta }_{{3}}{u}\,\right) d\tau \end{aligned}$$
(76)

For the analog circuit, we use the variables \(v_{x}\), \(v_{y}\) and \(v_{u}\) instead of x, u and y

$$\begin{aligned} v_{x}&=\int v_{u}d\tau \nonumber \\ v_{{u}}&=\int (\alpha v_{{x}}^{{3}}-{\mu }_{{2}}v_{{u}}{v}_{{x}}^{2}{ -\eta }_{{2}}v_{{y}} \nonumber \\&- \quad \,{\omega }_{{0}}v_{x}-{\mu }_{{1}}v_{{u}}-{\sigma v}_{{u}}+F_{0}\cos \left( \varOmega ^{\prime }\,\tau \right) )d\tau \nonumber \\ v_{y}&= \int \left( -{\omega }_{{e}}v_{y}+{\eta }_{{3}}v_{{u}}\,\right) d\tau \end{aligned}$$
(77)

The analog circuit for Eq. (10) is depicted in Fig. 2. From the outputs of the three integrators characterized by the capacitor \(C_{1}\), \(C_{2}\) and \(C_{3}\), one can build the equation of the circuit. The outputs of the three integrators are denoted \(v_{x}\), \(v_{y}\) and \(v_{u} \), respectively, are given by:

$$\begin{aligned} v_{x}&=\int {\displaystyle }\frac{1}{R_{1}C_{1}}v_{u}d\tau \nonumber \\ v_{{u}}&=\int \left( -{\displaystyle \frac{\,1}{100R_{3}C_{2}}}v_{x}^{{3}}-{ \displaystyle \ \frac{\,1}{100R_{4}C_{2}}v_{u}v_{x}^{{2}}-\,\displaystyle \frac{1 }{R_{6}C_{2}}}v_{y} \right. \nonumber \\&\left. \quad +{\displaystyle }\frac{1}{R_{5}C_{2}}v_{x}-{\ \displaystyle \frac{\,1}{ R_{2}C_{2}}}v_{u}-{\displaystyle \frac{\,1}{R_{7}C_{2}}}v_{u}+{\displaystyle \frac{v_{0}\cos \left( \varOmega \,t\right) }{R_{8}C_{2}}}\right) d\tau \nonumber \\ v_{y}&=\int \left( -{\displaystyle }\frac{1}{R_{9}C_{3}}v_{y}+{ \displaystyle }\frac{1}{R_{10}C_{3}}v_{u}\,\right) d\tau \end{aligned}$$
(78)

Differentiation of Eq. (78) with respect to the time gives:

$$\begin{aligned} v_{x}^{\prime }&={\displaystyle }\frac{1}{R_{1}C_{1}}v_{u} \nonumber \\ v_{u}^{\prime }&=\left( -{\displaystyle \frac{\,1}{100R_{3}C_{2}}}v_{x}^{{3}}-{ \displaystyle \ \frac{\,1}{100R_{4}C_{2}}v_{u}v_{x}^{{2}}-\,\displaystyle \frac{1 }{R_{6}C_{2}}}v_{y} \right. \nonumber \\&\left. +{\displaystyle }\frac{1}{R_{5}C_{2}}v_{x}-{\ \displaystyle \frac{\,1}{ R_{2}C_{2}}}v_{u}-{\displaystyle \frac{\,1}{R_{7}C_{2}}}v_{u}+\displaystyle \frac{v_{0}\cos \left( \varOmega \,t\right) }{R_{8}C_{2}}\right) \nonumber \\ v_{y}^{\prime }&=-{\displaystyle }\frac{1}{R_{9}C_{3}}v_{y}+{\displaystyle } \frac{1}{R_{10}C_{3}}v_{u} \end{aligned}$$
(79)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokem Fokou, I.S., Nono Dueyou Buckjohn, C., Siewe Siewe, M. et al. Circuit implementation of a piezoelectric buckled beam and its response under fractional components considerations. Meccanica 53, 2029–2052 (2018). https://doi.org/10.1007/s11012-017-0807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0807-x

Keywords

Navigation