Skip to main content

Advertisement

Log in

Nonlinear analysis and analog simulation of a piezoelectric buckled beam with fractional derivative

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

In this article, an analog circuit for implementing fractional-order derivative and a harmonic balance method for a vibration energy harvesting system under pure sinusoidal vibration source is proposed in order to predict the system response. The objective of this paper is to discuss the performance of the system with fractional derivative and nonlinear damping (\(\mu_{b}\)). Bifurcation diagram, phase portrait and power spectral density (PSD) are provided to deeply characterize the dynamics of the system. These results are corroborated by the 0-1 test. The appearance of the chaotic vibrations reduces the instantaneous voltage. The pre-experimental investigation is carried out through appropriate software electronic circuit (Multisim). The corresponding electronic circuit is designed, exhibiting periodic and chaotic behavior, in accord with numerical simulations. The impact of fractional derivative and nonlinear damping is presented with detail on the output voltage and power of the system. The agreement between numerical and analytical results justifies the efficiency of the analytical technique used. In addition, by combining the harmonic excitation with the random force, the stochastic resonance phenomenon occurs and improves the harvested energy. It emerges from these results that the order of fractional derivative μ and nonlinear damping \(\mu_{b}\) play an important role in the response of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richard Herrmann, Fractional Calculus: An Introduction for Physicists, 2nd edition (GigaHedron, Germany, 2013)

  2. J. Liouville, J. Ecole Polytech. 13, 1 (1832)

    Google Scholar 

  3. N. Sugimoto, J. Fluid Mech. 225, 631 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Engheta, IEEE Antennas Propag. Mag. 77, 35 (1997)

    Article  ADS  Google Scholar 

  5. G. Joulin, Combust. Sci. Technol. 43, 99 (1985)

    Article  Google Scholar 

  6. A. Dzielinski, G. Sarwas, D. Sierociuk, Adv. Differ. Equ. 2011, 11 (2011)

    Article  Google Scholar 

  7. A. Dzielinski, G. Sarwas, D. Sierociuk, Time domain validation of ultracapacitor fractional order model, in 49th IEEE Conference on Decision and Control, December 15-17, Hilton Atlanta Hotel, Atlanta, GA, USA 2010 (IEEE, 2010) pp. 3730--3735

  8. R. Martin, J. Jose Quintana, A. Ramos, I. de la Nuez, Electrotechnical Conference, MELECON 2008, in The 14th IEEE Mediterranean (2008) pp. 61--66

  9. A. Burke, J. Power Sources 91, 37 (2000)

    Article  ADS  Google Scholar 

  10. A. Jakubowska, J. Walczak, Analysis of the transient state in a circuit with supercapacitor, in Poznan University of Technology Academic Journals, no. 81, (2015) pp. 71--77

  11. Y. Wang, T. Tom Hartley, F. Carl Lorenzo, L. Jay Adams, Modeling ultracapacitors as fractional-order systems, in New Trends in Nanotechnology and Fractional Calculus Applications, edited by Joan E. Carletta, Robert J. Veillette, D. Baleanu, Z.B. Güvenç, J.A. Tenreiro Machado (Springer Science, New York, 2010)

  12. T.J. Freeborn, A.S. Elwakil, IEEE J. Emerg. S. T. CAS 3, 367 (2013)

    Google Scholar 

  13. A. Dzielinski, D. Sierociuk, Acta Montanistica Slov. Rocník 13, 136 (2008)

    Google Scholar 

  14. L. Debnath, Int. J. Math. Math. Sci. 2003, 3413 (2003)

    Article  Google Scholar 

  15. A.M. Tusset, J.M. Balthazar, D.G. Bassinello, B.R. Pontes Jr., Jorge Luis Palacios Felix, Nonlinear Dyn. 69, 1837 (2012)

    Article  Google Scholar 

  16. J. Cao, S. Zhou, D.J. Inman, Y. Chen, Nonlinear Dyn. 80, 1705 (2015)

    Article  Google Scholar 

  17. D. Li, J. Cao, S. Zhou, Y. Chen, Fractional order model of broadband piezoelectric energy harvesters, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2015, August 2-5, Boston, Massachusetts, USA 2015

  18. J.A.T. Machado, M.F. Silva, R.S. Barbosa, I.S. Jesus, C.M. Reis, M.G. Marcos, A.F. Galhano, Math. Probl. Eng. 2010, 639801 (2010)

    Google Scholar 

  19. F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Smart Mater. Struct. 21, 035021 (2012)

    Article  ADS  Google Scholar 

  20. G. Litak, Nonlinear analysis of energy harvesting system with fractional order physical properties, in Proceeding of first international symposium on energy challenges and mechanics, 08-14 july 2014, Aberdeen, Scotland, UK 2014

  21. A.E. Mohamed Herzallah, D. Baleanu, Nonlinear Dyn. 58, 385 (2009)

    Article  Google Scholar 

  22. A.E. Mohamed Herzallah, D. Baleanu, Nonlinear Dyn. 69, 977 (2012)

    Article  Google Scholar 

  23. F. Riewe, Phys. Rev. E 55, 3581 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Popescu, Rom. Astron. J. 23, 8597 (2013)

    Google Scholar 

  25. L. Yabin, A.H. Sodano, J. Intell. Mater. Syst. Struct. 21, 149 (2010)

    Article  Google Scholar 

  26. S. Westerlund, Phys. Scr. 43, 174 (1991)

    Article  ADS  Google Scholar 

  27. S. Westerlund, IEEE Trans. Dielectr. Electr. Insul. 1, 826 (1994)

    Article  Google Scholar 

  28. M.J. Curie, Ann. Chim. Phys. 6, 203 (1889)

    Google Scholar 

  29. E.R. Von Schweidler, Ann. Phys. 24, 711 (1907)

    Article  Google Scholar 

  30. G. Ala, M. Di Paola, E. Francomano, Li Yan, F.P. Pinnola, Viscoelasticity: An electrical point of view, in Proceeding of IEEE 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA), 23-25 June 2014, Catania, Italy 2014 (IEEE, 2014) po. 1--6, DOI:10.1109/ICFDA.2014.6967407

  31. E. von Schweidler, Die Anomalien der dielectrischen Erscheinugen, in Handbuch der Elektrizität und des Magnetismus, Vol. 1, Elektrizitätserregung und Elektrostatik, edited by Leo Graetz (Teubner, Leipzing Verlag, 1918) pp. 232--253

  32. S. Priya, D. Viehland, A.V. Carazo, J. Ryu, K. Uchino, J. Appl. Phys. 90, 1469 (2001)

    Article  ADS  Google Scholar 

  33. M.K. Samal, P. Seshu, S.K. Parashar, U. von Wagner, P. Hagedorn, B.K. Dutta, H.S. Kushwaha, Int. J. Solids Struct. 43, 1437 (2006)

    Article  Google Scholar 

  34. U. von Wagner, Int. J. Nonlinear Mech. 38, 565 (2003)

    Article  Google Scholar 

  35. O.P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002)

    Article  MathSciNet  Google Scholar 

  36. R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: modeling and control applications (World Scientific, New Jersey, 2010)

  37. A. Leung, H. Yang, Z. Guo, J. Sound Vib. 331, 1115 (2012)

    Article  ADS  Google Scholar 

  38. M. Xiao, W.X. Zheng, J. Cao, Math. Comput. Simul. 89, 1 (2013)

    Article  Google Scholar 

  39. I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer, New York, 2010)

  40. Mamat Mustafa, W.S. Mada Sanjaya, Maulana Dian Syah, Appl. Math. Sci. 7, 1 (2013)

    MathSciNet  Google Scholar 

  41. Gutenbert Kenfack, Alain Tiedeu, J. Signal Inf. Process. 4, 158 (2013)

    Google Scholar 

  42. Tae H. Lee, Ju H. Park, Int. J. Phys. Sci. 5, 1183 (2010)

    Google Scholar 

  43. J.O. Maaita, I.M. Kyprianidis, Ch.K. Volos, E. Meletlidou, J. Eng. Sci. Technol. Rev. 6, 74 (2013)

    Google Scholar 

  44. Mada Sanjaya, Halimatussadiyah, Dian Syah Maulana, Int. Schol. Sci. Res. Innov. 5, 1064 (2011)

    Google Scholar 

  45. W.M. Ahmad, A.M. Harb, Chaos, Solitons Fractals 18, 693 (2003)

    Article  ADS  Google Scholar 

  46. W.M. Ahmad, J.C. Sprott, Chaos, Solitons Fractals 16, 339 (2003)

    Article  ADS  Google Scholar 

  47. G.A. Gottwald, I. Melbourne, SIAM J. Appl. Dyn. Syst. 8, 129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  48. G.A. Gottwald, I. Melbourne, Nonlinearity 22, 1367 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Syta, G. Litak, S. Lenci, M. Scheffler, Chaos 24, 013107 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  50. A. Syta, C.R. Bowen, H.A. Kim, A. Rysak, G. Litak, Meccanica 50, 1961 (2015)

    Article  Google Scholar 

  51. Grzegorz Litak, Michael I. Friswell, Sondipon Adhikari, Eur. Phys. J. Plus 130, 103 (2015)

    Article  Google Scholar 

  52. S. Jeyakumari, V. Chinnathambi, S. Rajasekar, M.A.F. Sanjuan, Chaos 19, 043128 (2009)

    Article  ADS  Google Scholar 

  53. T.L.M. Djomo Mbong, M. Siewe Siewe, C. Tchawoua, Commun. Nonlinear Sci. Numer. Simul. 22, 228 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Mokem Fokou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokem Fokou, I.S., Buckjohn, C.N.D., Siewe Siewe, M. et al. Nonlinear analysis and analog simulation of a piezoelectric buckled beam with fractional derivative. Eur. Phys. J. Plus 132, 344 (2017). https://doi.org/10.1140/epjp/i2017-11605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11605-7

Navigation