Skip to main content

Advertisement

Log in

Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the few decades, the study of electro-mechanical systems which are capable to extract energy from an operating system in the environment has been of most importance. In this work, we present the extraction of energy from a simple portal frame structure excited by a harmonic force, where the energy harvesting is computed by using of a nonlinear piezoelectric material. The dynamical response of the system is examined, when there is 2:1 internal resonance between the symmetric and the sway mode, resulting the saturation phenomenon and vibration energy transfer between the symmetric (vertical) mode and the horizontal (sway) mode. An evaluation of the energy available for harvesting, in each of the considered modes, is computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94(25):254102. doi:10.1063/1.3159815

    Article  ADS  Google Scholar 

  2. Litak G, Friswell MI, Kwuimy CAK, Adhikari S, Borowiec M (2012) Energy harvesting by two magnetopiezoelastic oscillators with mistuning. Theor Appl Mech Lett 2(4):043009. doi:10.1063/2.1204309

    Article  Google Scholar 

  3. Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys D Nonlinear Phenom 239(10):640–653. doi:10.1016/j.physd.2010.01.019

    Article  ADS  MATH  Google Scholar 

  4. Syta A, Bowen CR, Kim HA, Rysak A, Litak G (2015) Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50(8):1961–1970. doi:10.1007/s11012-015-0140-1

    Article  Google Scholar 

  5. Friswell MI, Bilgen O, Ali SF, Litak G, Adhikari S (2015) The effect of noise on the response of a vertical cantilever beam energy harvester. ZAMM - J Appl Math Mech 95(5):433–443. doi:10.1002/zamm.201300183

    Article  Google Scholar 

  6. Litak G, Friswell MI, Adhikari S (2015) Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51:1017–1025. doi:10.1007/s11012-015-0287-9

    Article  MathSciNet  Google Scholar 

  7. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting from aeroelastic vibrations. In: Piezoelectric energy harvesting. Wiley, Chichester. doi:10.1002/9781119991151

  8. Priya S, Inman DJ (eds) (2009) Energy harvesting technologies, vol 21. Springer, New York. doi:10.1007/978-0-387-76464-1

    Google Scholar 

  9. Stephen NG (2006) On energy harvesting from ambient vibration. J Sound Vib 293(1):409–425. doi:10.1016/j.jsv.2005.10.003

    Article  ADS  Google Scholar 

  10. Jalili N (2010) Piezoelectric-based vibration control: from macro to micro/nano scale systems. Springer, US. doi:10.1007/978-1-4419-0070-8

    Book  Google Scholar 

  11. Preumont A (2006) Mechatronics: dynamics of electromechanical and piezoelectric systems, vol 136. Springer, Netherlands. doi:10.1007/1-4020-4696-0

    MATH  Google Scholar 

  12. DuToit NE, Wardle BL (2007) Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J 45(5):1126–1137. doi:10.2514/1.25047

    Article  ADS  Google Scholar 

  13. Twiefel J, Richter B, Sattel T, Wallaschek J (2008) Power output estimation and experimental validation for piezoelectric energy harvesting systems. J Electroceram 20(3–4):203–208. doi:10.1007/s10832-007-9168-5

    Article  Google Scholar 

  14. Crawley EF, Anderson EH (1990) Detailed models of piezoceramic actuation of beams. J Intell Mater Syst Struct 1(1):4–25. doi:10.2514/6.1989-1388 

    Article  Google Scholar 

  15. Triplett A, Quinn DD (2009) The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J Intell Mater Syst Struct 20(16):1959–1967. doi:10.1177/1045389X09343218

    Article  Google Scholar 

  16. Daqaq MF, Masana R, Erturk A, Quinn DD (2014) On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl Mech Rev 66(4):040801. doi:10.1115/1.4026278

    Article  ADS  Google Scholar 

  17. Iliuk I, Balthazar JM, Tusset AM, Piqueira JRC, de Pontes BR, Felix JLP, Bueno M (2013) A non-ideal portal frame energy harvester controlled using a pendulum. Eur Phys J 222(7):1575–1586 (special topics). doi:10.1140/epjst/e2013-01946-4

    Google Scholar 

  18. Iliuk I, Balthazar JM, Tusset AM, Piqueira JR, de Pontes BR, Felix JL, Bueno M (2013) Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system. J Intell Mater Syst Struct 25(4). doi:10.1177/1045389X13500570

  19. Balthazar JM, Rocha RT, Brasil RMFL, Tusset AM, de Pontes BR, Silveira M (2014) Mode saturation, mode coupling and energy harvesting from ambient vibration in a portal frame structure. In: ASME 2014 international design engineering technical conferences and computers and information in engineering conference (pp V008T11A044–V008T11A044). American Society of Mechanical Engineers. doi:10.1115/DETC2014-34268

  20. Iliuk I, Brasil RMLRF, Balthazar JM, Tusset AM, Piccirillo V, Piqueira JRC (2014) Potential application in energy harvesting of intermodal energy exchange in a frame: FEM analysis. Int J Struct Stab Dynamics 14(8). doi:10.1142/S0219455414400276

  21. Nayfeh AH, Mook DT, Marshall LR (1973) Nonlinear coupling of pitch and roll modes in ship motions. J Hydronaut 7(4):145–152. doi:10.2514/3.62949 

    Article  Google Scholar 

  22. Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, United States, p 720

    Google Scholar 

  23. Mook DT, Plaut RH, HaQuang N (1985) The influence of an internal resonance on non-linear structural vibrations under subharmonic resonance conditions. J Sound Vib 102(4):473–492. doi:10.1016/S0022-460X(85)80108-5

    Article  ADS  MATH  Google Scholar 

  24. Nayfeh AH (2000) Nonlinear interactions: analytical, computational and experimental methods. In: Nonlinear Science. Wiley, New York, p 760

    MATH  Google Scholar 

  25. Mankala R, Quinn DD (2004) Resonant dynamics and saturation in a coupled system with quadratic nonlinearities. In: Proceedings of the ASME-DETC conference, anaheim, 621–626. doi:10.1115/IMECE2004-61623

  26. Quinn DD (2007) Resonant dynamics in strongly nonlinear systems. Nonlinear Dyn 49(3):361–373. doi:10.1007/s11071-006-9126-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Golnaraghi MF (1991) Vibration suppression of flexible structures using internal resonance. Mech Res Commun 18(2–3):135–143. doi:10.1016/0093-6413(91)90042-U

    Article  MATH  Google Scholar 

  28. Oueini SS, Nayfeh AH, Golnaraghi MF (1997) A theoretical and experimental implementation of a control method based on saturation. Nonlinear Dyn 13(2):189–202. doi:10.1023/A:1008207124935

    Article  MATH  Google Scholar 

  29. Oueini SS (1999) Techniques for controlling structural vibrations, PhD Thesis, Virginia Tech US

  30. Pai PF, Schulz MJ (2000) A refined nonlinear vibration absorber. Int J Mech Sci 42(3):537–560. doi:10.1016/S0020-7403(98)00135-0

    Article  MATH  Google Scholar 

  31. Pai PF, Wen B, Naser AS, Schulz MJ (1998) Structural vibration control using PZT patches and non-linear phenomena. J Sound Vib 215(2):273–296. doi:10.1006/jsvi.1998.1612

    Article  ADS  Google Scholar 

  32. Shoeybi M, Ghorashi M (2005) Control of a nonlinear system using the saturation phenomenon. Nonlinear Dyn 42(2):113–136. doi:10.1007/s11071-005-4123-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Warminski J, Cartmell MP, Mitura A, Bochenski M (2013) Active vibration control of a nonlinear beam with self-and external excitations. Shock Vib 20(6):1033–1047. doi:10.3233/SAV-130821

    Article  Google Scholar 

  34. Felix JLP, Balthazar JM, Brasil RM (2005) On saturation control of a non-ideal vibrating portal frame foundation type shear-building. J Vib Control 11(1):121–136. doi:10.1177/1077546305047656

    Article  MATH  Google Scholar 

  35. Tusset AM, Piccirillo V, Bueno AM, Balthazar JM, Sado D, Felix JLP, da Fonseca RMLR (2015) Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J Vib Control 22(17):3621–3637. doi:10.1177/1077546314564782

  36. Felix JLP, Silva EL, Balthazar JM, Tusset AM, Bueno AM, Brasil RMLRF (2014) On nonlinear dynamics and control of a robotic arm with chaos. In: MATEC Web of Conferences (Vol 16, p 05002). EDP Sciences. doi:10.1051/matecconf/20141605002

  37. Hall BD, Mook DT, Nayfeh AH, Preidikman S (2001) Novel strategy for suppressing the flutter oscillations of aircraft wings. AIAA J 39(10):1843–1850. doi:10.2514/2.1190

    Article  ADS  Google Scholar 

  38. Pratt JR, Oueini SS, Nayfeh AH (1999) Terfenol-D nonlinear vibration absorber. J Intell Mater Syst Struct 10(1):29–35. doi:10.1177/1045389X9901000104

    Article  MATH  Google Scholar 

  39. Ashour ON, Nayfeh AH (2002) Adaptive control of flexible structures using a nonlinear vibration absorber. Nonlinear Dyn 28(3–4):309–322. doi:10.1023/A:1015622630382

    Article  MATH  Google Scholar 

  40. Balthazar JM, Felix JLP, Brasil RMLRD (2003) On nonlinear dynamics and control of a particular portal frame foundation model, excited by a non-ideal motor. Mater Sci Forum 440:371–380. doi:10.4028/www.scientific.net/MSF.440-441.371

    Article  Google Scholar 

  41. Balthazar JM, Felix JL, Brasil RM, Krasnopolskaya TS, Shvets AY (2009) Nonlinear interactions in a piezoceramic bar transducer powered by a vacuum tube generated by a nonideal source. J Comput Nonlinear Dyn 4(1):011013. doi:10.1115/1.3007909

    Article  Google Scholar 

  42. Vakakis AF (2008) Nonlinear targeted energy transfer in mechanical and structural systems, vol 156. Springer, Netherlands. doi:10.1007/978-1-4020-9130-8

    MATH  Google Scholar 

  43. Tusset AM, Balthazar JM, Chavarette FR, Felix JLP (2012) On energy transfer phenomena, in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-rheological damper. Nonlinear Dyn 69(4):1859–1880. doi:10.1007/s11071-012-0391-5

    Article  MathSciNet  MATH  Google Scholar 

  44. Tusset AM, Balthazar JM, Felix JLP (2012) On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. J Vib Control 19(6):803–813. doi:10.1177/1077546311435518

Download references

Acknowledgements

The authors acknowledge support by CNPq (Grant: 447539/2014-0), CAPES and FAPESP, all Brazilian research funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo T. Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, R.T., Balthazar, J.M., Tusset, A.M. et al. Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance. Meccanica 52, 2583–2602 (2017). https://doi.org/10.1007/s11012-017-0633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0633-1

Keywords

Navigation