Skip to main content

Advertisement

Log in

On vibration mitigation and energy harvesting of a non-ideal system with autoparametric vibration absorber system

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper demonstrates that vibration mitigation and energy harvesting can be achieved simultaneously by using of an electricity-generating from autoparametric vibration absorber system (AVAS) and non-ideal system (NIS). The NIS consists of a simple portal frame excited by a small dc motor with eccentric mass, with limited power supply and located on the top. The AVAS consists of a cantilever beam with tip mass parallel coupled to NIS. A piezoelectric material is considered for energy harvesting installed in the base of the AVAS and an electric circuit is connected to the piezoelectric material in order to produce voltage output. Several numerical simulations were carried out focusing on the passage through the resonance of NIS, when the motor rotational frequency is near the portal frame natural frequency and when the non-ideal subsystem frequency is approximately twice the absorber beam frequency (two-to-one internal resonance). The results showed the existence of Sommerfeld effect in NIS and saturation phenomenon in the NIS–AVAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nayfeh AH (2000) Nonlinear interactions: analytical, computational, and experimental methods. Wiley, New York

    MATH  Google Scholar 

  2. Haxton RS, Barr ADS (1972) The autoparametric vibration absorber. J Eng Ind 94(1):119–125. https://doi.org/10.1115/1.3428100

    Article  Google Scholar 

  3. Rocha RT (2016) On saturation phenomenon in energy harvesting based on nonlinear piezoelectric materials coupled to a portal frame foundation with ideal and non-ideal excitations. Ph.D. Dissertation, 2016

  4. Preumont A (2006) Mechatronics: dynamics of electromechanical and piezoelectric systems, vol 136. Springer, Berlin

    MATH  Google Scholar 

  5. Priya S, Inman DJ (2009) Energy harvesting technologies, vol 21. Springer, New York

    Book  Google Scholar 

  6. Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94(25):254102. https://doi.org/10.1063/1.3159815

    Article  ADS  Google Scholar 

  7. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, Hoboken

    Book  Google Scholar 

  8. Litak G, Friswell MI, Kwuimy CAK, Adhikari S, Borowiec M (2012) Energy harvesting by two magnetopiezoelastic oscillators with mistuning. Theor Appl Mech Lett 2(4):043009. https://doi.org/10.1063/2.1204309

    Article  Google Scholar 

  9. Stephen NG (2006) On energy harvesting from ambient vibration. J Sound Vib 293(1):409–425. https://doi.org/10.1016/j.physd.2010.01.019

    Article  ADS  Google Scholar 

  10. Kononenko VO (1969) Vibrating systems with limited power supply. Illife Books, London

    Google Scholar 

  11. Balthazar JM, Mook DT, Weber HI, Brasil RMLRF, Fenili A, Belato D, Felix JLP (2003) An overview on non-ideal vibrations. Meccanica 38(6):613–621. https://doi.org/10.1023/A:1025877308510

    Article  MATH  Google Scholar 

  12. Felix JLP, Balthazar JM, Brasil RMLRF (2009) Comments on nonlinear dynamics of a non-ideal Duffing–Rayleigh oscillator: numerical and analytical approaches. J Sound Vib 319(3):1136–1149. https://doi.org/10.1016/j.jsv.2008.06.036

    Article  ADS  Google Scholar 

  13. Warminski J, Balthazar JM, Brasil RMLRF (2001) Vibrations of a non-ideal parametrically and self-excited model. J Sound Vib 245(2):363–374. https://doi.org/10.1006/jsvi.2000.3515

    Article  ADS  MATH  Google Scholar 

  14. Samantaray AK, Dasgupta SS, Bhattacharyya R (2010) Sommerfeld effect in rotationally symmetric planar dynamical systems. Int J Eng Sci 48(1):21–36. https://doi.org/10.1016/j.ijengsci.2009.06.005

    Article  Google Scholar 

  15. Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, Hoboken

    MATH  Google Scholar 

  16. Bisoi A, Samantaray AK, Bhattacharyya R (2017) Control strategies for DC motors driving rotor dynamic systems through resonance. J Sound Vib 411:304–327. https://doi.org/10.1016/j.jsv.2017.09.014

    Article  ADS  Google Scholar 

  17. Bisoi A, Samantaray AK, Bhattacharyya R (2018) Sommerfeld effect in a two-disk rotor dynamic system at various unbalance conditions. Meccanica 53(4–5):681701. https://doi.org/10.1007/s11012-017-0757-3

    MathSciNet  Google Scholar 

  18. Bisoi A, Samantaray AK, Bhattacharyya R (2017) Sommerfeld effect in a gyroscopic overhung rotor-disk system. Nonlinear Dyn 88(3):1565–1585. https://doi.org/10.1007/s11071-017-3329-0

    Article  Google Scholar 

  19. Balthazar JM, Tusset AM, Brasil RMLRF, Felix JLP, Rocha RT, Janzen FC, Nabarrete A, Oliveira C (2018) An overview on the appearance of the Sommerfeld effect and saturation phenomenon in non-ideal vibrating systems (NIS) in macro and MEMS scales. Nonlinear Dyn 93:19. https://doi.org/10.1007/s11071-018-4126-0

    Article  Google Scholar 

  20. Palacios JLP, Balthazar JM, Brasil RMLRF (2002) On non-ideal and non-linear portal frame dynamics analysis using bogoliubov averaging method. J Braz Soc Mech Sci 24(4):257–265. https://doi.org/10.1590/S0100-73862002000400002

    Article  Google Scholar 

  21. Brasil RMLRF, Garzeri FJ, Balthazar JM (2001) An experimental study of the nonlinear dynamics of a portal frame foundation for a non-ideal motor. In: Proceedings of DETC01 ASME 2001 design engineering technical conference and computers and information in engineering conference, pp 9–12

  22. Rocha RT, Balthazar JM, Quinn DD, Tusset AM, Felix JLP (2016, August). Non-ideal system with quadratic nonlinearities containing a two-to-one internal resonance. In: ASME 2016 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp V008T10A015–V008T10A015. https://doi.org/10.1115/DETC2016-59372

  23. Felix JLP, Balthazar JM, Brasil RMLRF (2005) On saturation control of a non-ideal vibrating portal frame foundation type shear-building. J Vib Control 11(1):121–136. https://doi.org/10.1177/1077546305047656

    Article  MATH  Google Scholar 

  24. Oueini SS, Nayfeh AH, Golnaraghi MF (1997) A theoretical and experimental implementation of a control method based on saturation. Nonlinear Dyn 13(2):189–202. https://doi.org/10.1023/A:1008207124935

    Article  MATH  Google Scholar 

  25. Oueini SS (1999) Techniques for controlling structural vibrations. Ph.D. Thesis

  26. Pai PF, Schulz MJ (2000) A refined nonlinear vibration absorber. Int J Mech Sci 42(3):537–560. https://doi.org/10.1016/S0020-7403(98)00135-0

    Article  MATH  Google Scholar 

  27. Pai PF, Wen B, Naser AS, Schulz MJ (1998) Structural vibration control using PZT patches and non-linear phenomena. J Sound Vib 215(2):273–296. https://doi.org/10.1016/S0020-7403(98)00135-0

    Article  ADS  Google Scholar 

  28. Haddow AG, Barr ADS, Mook DT (1984) Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure. J Sound Vib 97(3):451–473. https://doi.org/10.1016/0022-460X(84)90272-4

    Article  ADS  MathSciNet  Google Scholar 

  29. Bux SL, Roberts JW (1986) Non-linear vibratory interactions in systems of coupled beams. J Sound Vib 104(3):497–520. https://doi.org/10.1016/0022-460X(86)90304-4

    Article  ADS  Google Scholar 

  30. Hamed YS, Amer YA (2014) Nonlinear saturation controller for vibration supersession of a nonlinear composite beam. J Mech Sci Technol 28(8):2987–3002. https://doi.org/10.1007/s12206-014-0706-1

    Article  Google Scholar 

  31. Xu J, Chen Y, Chung KW (2015) An improved time-delay saturation controller for suppression of nonlinear beam vibration. Nonlinear Dyn 82(4):1691–1707. https://doi.org/10.1007/s11071-015-2270-3

    Article  MathSciNet  MATH  Google Scholar 

  32. Balthazar JM, Rocha RT, Brasil RMFL, Tusset AM, de Pontes BR, Silveira M (2014) Mode saturation, mode coupling and energy harvesting from ambient vibration in a portal frame structure. In: ASME 2014 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp V008T11A044–V008T11A044. https://doi.org/10.1115/DETC2014-34268

  33. Rocha RT, Balthazar JM, Tusset AM, Piccirillo V, Felix JLP (2016) Comments on energy harvesting on a 2:1 internal resonance portal frame support structure, using a nonlinear-energy sink as a passive controller. Int Rev Mech Eng (IREME) 10(3):147–156. https://doi.org/10.15866/ireme.v10i3.8795

    Article  Google Scholar 

  34. Iliuk I, Balthazar JM, Tusset AM, Piqueira JRC, de Pontes BR, Felix JLP, Bueno AM (2013) A non-ideal portal frame energy harvester controlled using a pendulum. Eur Phys J Spec Top 222(7):1575–1586. https://doi.org/10.1140/epjst/e2013-01946-4

    Article  Google Scholar 

  35. Iliuk I, Balthazar JM, Tusset AM, Piqueira JR, de Pontes BR, Felix JLP, Bueno AM (2014) Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system. J Intell Mater Syst Struct 25(4):417–429. https://doi.org/10.1177/1045389X13500570

    Article  Google Scholar 

  36. Lee WK, Cho DS (2000) Damping effect of a randomly excited autoparametric system. J Sound Vib 236(1):23–31. https://doi.org/10.1006/jsvi.2000.2965

    Article  ADS  MATH  Google Scholar 

  37. Sado D, Kot M (2007) Chaotic vibration of an autoparametrical system with a non-ideal source of power. J Theor Appl Mech 45(1):119–131

    Google Scholar 

  38. Mitura A, Kecik K (2016) Influences of system parameters on energy harvesting from autoparametric absorber. Numerical research. Vib Phys Syst 27:281–286

    Google Scholar 

  39. Kecik K, Borowiec M (2013) An autoparametric energy harvester. Eur Phys J Spec Top 222(7):1597–1605. https://doi.org/10.1140/epjst/e2013-01948-2

    Article  Google Scholar 

  40. Erturk A, Renno JM, Inman DJ (2009) Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J Intell Mater Syst Struct 20(5):529–544. https://doi.org/10.1177/1045389X08098096

    Article  Google Scholar 

  41. Harne RL, Sun A, Wang KW (2016) Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system. J Sound Vib 363:517531. https://doi.org/10.1016/j.jsv.2015.11.017

    Article  Google Scholar 

  42. Cao DX, Leadenham S, Erturk A (2015) Internal resonance for nonlinear vibration energy harvesting. Eur Phys J Spec Top 224:28672880. https://doi.org/10.1140/epjst/e2015-02594-4

    Article  Google Scholar 

  43. Jia Y, Seshia AA (2014) An auto-parametrically excited vibration energy harvester. Sens Actuators A 220:69–75. https://doi.org/10.1016/j.sna.2014.09.012

    Article  Google Scholar 

  44. Sodano HA, Park G, Inman DJ (2004) Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2):49–58. https://doi.org/10.1111/j.1475-1305.2004.00120.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by FAPERGS, CNPq, CAPES and FAPESP, all Brazilian research funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Tumolin Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix, J.L.P., Balthazar, J.M., Rocha, R.T. et al. On vibration mitigation and energy harvesting of a non-ideal system with autoparametric vibration absorber system. Meccanica 53, 3177–3188 (2018). https://doi.org/10.1007/s11012-018-0881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0881-8

Keywords

Navigation