Skip to main content
Log in

Nonlinear normal modes for damage detection

  • Nonlinear Dynamics, Identification and Monitoring of Structures
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The sensitivity of the nonlinear dynamic response to damage is investigated in simply supported beams by computing the nonlinear normal modes (NNMs) and exploiting the rich information they unfold about the nonlinear system behavior. Damage is introduced as a reduction of the flexural stiffness within a small segment of the beam span. The problem is formulated in a piece-wise fashion and analytically tackled by using the method of multiple scales to compute the NNMs and the backbone curves. The latter describe the frequency versus free oscillation amplitude for each mode and as such they represent the skeleton of the nonlinear frequency response around each beam modal frequency. The bending of the backbones is regulated by the so-called effective nonlinearity coefficients associated with each mode. The comparison between the damaged and undamaged beams shows a sensitivity of the effective nonlinearity coefficients higher than the sensitivity of the linear natural frequencies. Moreover, the nonlinear frequency trends unfold an interesting dependence of the nonlinear free response on the stiffness reduction at the damage site. Such dependence yields useful information about the damage position. An effective identification strategy for the damage position is proposed by computing the damage-induced discontinuities in the second derivative of the NNMs (i.e., first order estimate of the bending curvature), without resorting to a baseline model of the undamaged beam. This goal is achieved by computing a high order derivative of the Nadaraya–Watson kernel estimator, which is evaluated from a finite set of sampled beam deflections associated with each individual NNM. The results show that the second derivatives of higher NNMs are more sensitive to damage-induced discontinuities than the linear modal curvatures. The robustness against noise of the damage identification process is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andreaus U, Casini P, Vestroni F (2007) Non-linear dynamics of a cracked cantilever beam under harmonic excitation. Int J Non-linear Mech 42(3):566–575

    Article  Google Scholar 

  2. Benedettini F, Dilena M, Morassi A (2015) Vibration analysis and structural identification of a curved multi-span viaduct. Mech Syst Signal Process 54:84–107

    Article  ADS  Google Scholar 

  3. Benfratello S, Cacciola P, Impollonia N, Masnata A, Muscolino G (2007) Numerical and experimental verification of a technique for locating a fatigue crack on beams vibrating under Gaussian excitation. Eng Fract Mech 74(18):2992–3001

    Article  Google Scholar 

  4. Bornn L, Farrar C, Park G (2010) Damage detection in initially nonlinear systems. Int J Eng Sci 48(10):909–920

    Article  Google Scholar 

  5. Carboni B, Lacarbonara W (2012) A three-dimensional continuum approach to the thermoelastodynamics of large-scale structures. Eng Struct 40:155–167

    Article  Google Scholar 

  6. Casini P, Giannini O, Vestroni F (2006) Experimental evidence of non-standard bifurcations in non-smooth oscillator dynamics. Nonlinear Dyn 46(3):259–272

    Article  MATH  Google Scholar 

  7. Casini P, Vestroni F (2004) Nonstandard bifurcations in oscillators with multiple discontinuity boundaries. Nonlinear Dyn 35(1):41–59

    Article  MathSciNet  MATH  Google Scholar 

  8. Chati M, Rand R, Mukherjee S (1997) Modal analysis of a cracked beam. J Sound Vib 207(2):249–270

    Article  ADS  MATH  Google Scholar 

  9. Chu Y, Shen MH (1992) Analysis of forced bilinear oscillators and the application to cracked beam dynamics. AIAA J 30(10):2512–2519

    Article  ADS  MATH  Google Scholar 

  10. Corrado N, Gherlone M, Surace C, Hensman J, Durrande N (2015) Damage localisation in delaminated composite plates using a Gaussian process approach. Meccanica 50(10):2537–2546

    Article  MathSciNet  MATH  Google Scholar 

  11. Curadelli R, Riera J, Ambrosini D, Amani M (2008) Damage detection by means of structural damping identification. Eng Struct 30(12):3497–3504

    Article  Google Scholar 

  12. Dessi D, Camerlengo G (2015) Damage identification techniques via modal curvature analysis: overview and comparison. Mech Syst Signal Process 52–53:181–205

    Article  Google Scholar 

  13. Dilena M, Morassi A, Benedettini F, Eusani F (2009) Dynamical tests on a damaged bridge. In: Proceedings of the 3rd IOMAC international operational modal analysis conference, pp 577–584

  14. D’Souza K, Epureanu B (2005) Damage detection in nonlinear systems using system augmentation and generalized minimum rank perturbation theory. Smart Mater Struct 14(5):989–1000

    Article  ADS  Google Scholar 

  15. Gauthier J, Whalen T, Liu J (2008) Experimental validation of the higher-order derivative discontinuity method for damage identification. Struct Control Health Monit 15(2):143–161

    Article  Google Scholar 

  16. Gijbels I, Goderniaux AC (2005) Data-driven discontinuity detection in derivatives of a regression function. Commun Stat Theory Methods 33(4):851–871

    Article  MathSciNet  MATH  Google Scholar 

  17. Lacarbonara W (2013) Nonlinear structural mechanics: theory, dynamical phenomena and modeling. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Lacarbonara W, Camillacci R (2004) Nonlinear normal modes of structural systems via asymptotic approach. Int J Solids Struct 41(20):5565–5594

    Article  MATH  Google Scholar 

  19. Lacarbonara W, Yabuno H, Hayashi K (2007) Non-linear cancellation of the parametric resonance in elastic beams: theory and experiment. Int J Solids Struct 44(7):2209–2224

    Article  MATH  Google Scholar 

  20. Quaranta G, Carboni B, Lacarbonara W (2012) On the reliability of a PCA-based method for structural diagnosis in bridge structures with environmental disturbances. MATEC Web Conf 1:01–002

    Article  Google Scholar 

  21. Quaranta G, Carboni B, Lacarbonara W (2016) Damage detection by modal curvatures: numerical issues. J Vib Control 22:1913–1927

    Article  MathSciNet  Google Scholar 

  22. Ratcliffe C (1997) Damage detection using a modified Laplacian operator on mode shape data. J Sound Vib 204(3):505–517

    Article  ADS  Google Scholar 

  23. Rosenberg R (1961) On normal vibrations of a general class of nonlinear dual-mode systems. J Appl Mech 28(2):275–283

    Article  MathSciNet  MATH  Google Scholar 

  24. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Book  MATH  Google Scholar 

  25. Surace C, Archibald R, Saxena R (2013) On the use of the polynomial annihilation edge detection for locating cracks in beam-like structures. Comput Struct 114–115:72–83

    Article  Google Scholar 

  26. Vestroni F, Benedettini F (2010) Dynamical tests and analysis for the assessment of structural conditions of bridges. In: International association for bridge and structural engineering (IABSE symposium report), vol 97, pp 46–53

  27. Vestroni F, Luongo A, Paolone A (2008) A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system. Nonlinear Dyn 54(4):379–393

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu Y, Zhang J, Li J, Xia Y (2009) Experimental investigation on statistical moment-based structural damage detection method. Struct Health Monit 8(6):555–571

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of Lacarbonara and Carboni through a 2010–2011 MIUR (Italian Ministry of Education, University and Scientific Research) PRIN Grant and 2013 Sapienza Grant is gratefully acknowledged. The work of Quaranta is framed within the project DPC–ReLUIS, RS 4 “Osservatorio sismico delle strutture e monitoraggio”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Lacarbonara.

Appendix

Appendix

The resonant nonlinear force generated by the jth mode at third order can be piece-wise expressed as

$$\begin{aligned} g_{j,k}(x)&= -2\omega _j^2\varphi _{j,k}' \left( \sum _{i=1}^{k-1}{\int _{x_{i-1}}^{x_i}{\varphi _{j,i}'^2 \hbox {d}x}}+\int _{x_{k-1}}^x{\varphi _{j,k}'^2 \hbox {d}x}\right) \nonumber \\&\quad -3\omega _j^2\varphi _{j,k}{''} \Big (\sum _{i=1}^{n_e-k}{\int _{x_{n_e-i+1}}^{x_{n_e-i}} {\varphi _{j,n_e-i+1} \varphi _{j,n_e-i+1}'\hbox {d}x} +\int _{x_k}^x{\varphi _{j,k} \varphi _{j,k}'\hbox {d}x}}\Big )\nonumber \\&\quad -2\omega _j^2\varphi _{j,k}{''}\left[ \sum _{i=1}^{n_e-k}{\int _{x_{n_e-i+1}}^{x_{n_e-i}} {\left( \sum _{l=1}^{n_e-i}{\int _{x_{l-1}}^{x_l}{\varphi _{j,l}'^2\hbox {d}x}} +\int _{x_{n_e-i}}^x{\varphi _{j,n_e-i+1}'^2\hbox {d}x}\right) \hbox {d}x}}\right. \nonumber \\&\quad \left. +\int _{x_k}^x{\left( \sum _{i=1}^{k-1}{\int _{x_{i-1}}^{x_i}{\varphi _{j,i}'^2 \hbox {d}x}+\int _{x_{k-1}}^x{\varphi _{j,k}'^2 \hbox {d}x}}\right) \hbox {d}x}\right] -\tfrac{3}{2}\omega _j^2\varphi _{j,k}'^2\nonumber \\&\quad +\tfrac{3}{2}\alpha _{n_e} \varphi _{j,k}{''} \left. \varphi _{j,n_e}{''}^2\right| _{x=1}-\tfrac{9}{2}\alpha _k\varphi _{j,k}{''}^3-\tfrac{3}{2}\alpha _k \varphi _{j,k}'^2 \varphi _{j,k}{''''}\nonumber \\&\quad -3\alpha _{n_e} \left. \varphi _{j,n_e}'\right| _{x=1}\varphi _{j,k}{''} \left. \varphi _{j,n_e}{'''}\right| _{x=1}-9\alpha _k \varphi _{j,k}' \varphi _{j,k}{''} \varphi _{j,k}{'''}. \end{aligned}$$
(34)

If the lower summation index in Eq. 34 is greater than the upper index in the summations, the associated result is set to zero.

The function \(f_j(x)\) representing the span-wise force distribution associated with the third harmonic \(A_j^3 \hbox {e}^{3{\mathrm {i}} \omega _j T_0}\) is expressed as

$$\begin{aligned} f_j(x)&= -2\omega _j^2\varphi _j'\int _0^x{\varphi _j'^2\hbox {d}x} -\omega _j^2\varphi _j{''}\int _1^x{\varphi _j\varphi _j'\hbox {d}x}\nonumber \\&\quad -2\omega _j^2\varphi _j{''}\int _1^x{\int _0^x{\varphi _j'^2\hbox {d}x^2}} -\tfrac{1}{2}\omega _j^2\varphi _j\varphi _j'^2+\tfrac{1}{2}\alpha _{n_e} \varphi _j{''} \left. \varphi _j{''}^2\right| _{x=1}\nonumber \\&\quad -\tfrac{3}{2}\alpha _k\varphi _j{''}^3-\alpha _{n_e} \left. \varphi _j'\right| _{x=1} \varphi _j{''} \left. \varphi _j{'''}\right| _{x=1}-3\alpha _k \varphi _j' \varphi _j{''} \varphi _j{'''}-\tfrac{1}{2}\alpha _k \varphi _j'^2 \varphi _j{''''}. \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacarbonara, W., Carboni, B. & Quaranta, G. Nonlinear normal modes for damage detection. Meccanica 51, 2629–2645 (2016). https://doi.org/10.1007/s11012-016-0453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0453-8

Keywords

Navigation