Skip to main content
Log in

Damage quantification in beam-type structures using modal curvature ratio

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Modal curvature ratio approach for the localization and quantification of damage in beam-type structures is proposed, demonstrating capability across both dense and sparse measurement grids. This method directly utilizes modal properties (i.e., mode shape) without the requirement of a complete structural model of the structure. This study involves the mathematical derivation of the proposed algorithm, which relies on establishing correlations between modal parameters derived from fundamental theoretical formulations for both pristine and damaged beams. The method’s efficiency and universality are confirmed through numerical case studies that identify and measure damage under various predefined scenarios. Numerical modal analysis is conducted using MATLAB for both damaged and pristine beams. The proposed approach demonstrates a high degree of accuracy in localizing and quantifying the damage. Notably, the approach exhibits a remarkable capability to identify and measure damage with a stiffness loss, as low as 5%. The investigation extends to multiple damage scenarios and considers the influence of noise. The methodology proves effective in discerning the severity of damage, showcasing improvements over prior results. Eventually, an integrated model-free approach for damage locating and quantification is presented for proposal based on the mathematical and numerical method. Considering the versatility of beams as structural elements, the proposed method provides a potential instrument for real-world damage detection in the field of structural health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

E :

Modulus of elasticity

x :

Location along the span

t :

Time

L :

Length of span

E :

Modulus of elasticity

I(x):

Second moment of area

I 0 :

Second moment of area of undamaged beam

m(x):

Mass per unit length

v(x,t):

Transverse displacement response

x 0 :

Location of damage

A :

Cross-sectional area of the beam

\(v_{i}^{*} (x)\) :

ith generalized mode shape

\(u_{i}^{*} (t)\) :

ith generalized time-dependent amplitude

\(\varepsilon\) :

Damage intensity

\(\eta\) :

Damage shape

\(\rho\) :

Mass per unit volume

\(\lambda\) :

Eigen value

\(\omega\) :

Eigen frequency

MCR :

Modal curvature ratio

CSR:

Calculated stiffness reduction

ASR:

Actual stiffness reduction

DR:

Damage region

References

  1. Singh V, Sangle K (2022) Analysis of vertically oriented coupled shear wall interconnected with coupling beams. HighTech Innov J 3(2):230–242. https://doi.org/10.28991/HIJ-2022-03-02-010

    Article  CAS  Google Scholar 

  2. Mohammed AH, Mubarak HM, Hussein AK, Abulghafour TZ, Nassani DE (2022) Punching shear characterization of steel fiber-reinforced concrete flat slabs. HighTech Innov J 3(4):483–490. https://doi.org/10.28991/HIJ-2022-03-04-08

    Article  Google Scholar 

  3. Mahmoud S, Youssef A, Salem H (2022) Enhanced torsion mechanism of small-scale reinforced concrete beams with spiral transverse reinforcement. Civ Eng J 8(11):2640–2660. https://doi.org/10.28991/CEJ-2022-08-11-019

    Article  Google Scholar 

  4. Amir A, Rahman A, Opirina L, Idris F (2022) Performance flexural of RC beams without concrete at tension cross-section. Civ Eng J 8(11):2560–2572. https://doi.org/10.28991/CEJ-2022-08-11-014

    Article  Google Scholar 

  5. Ciambella J, Vestroni F (2015) The use of modal curvatures for damage localization in beam-type structures. J Sound Vib 340:126–137. https://doi.org/10.1016/j.jsv.2014.11.037

    Article  ADS  Google Scholar 

  6. Alabdulhady MY, Sneed LH, Abdelkarim OI, ElGawady MA (2017) Finite element study on the behavior of RC beams strengthened with PBO-FRCM composite under torsion. Compos Struct 179:326–339. https://doi.org/10.1016/j.compstruct.2017.07.079

    Article  Google Scholar 

  7. Suman S, Samanta A (2022) Proposed design methodology for laterally unrestrained monosymmetric I-beams in fire. Innov Infrastruct Solut 7:367. https://doi.org/10.1007/s41062-022-00972-z

    Article  Google Scholar 

  8. Kumar R, Rai B, Samui P (2023) Machine learning techniques for prediction of failure loads and fracture characteristics of high and ultra-high strength concrete beams. Innov Infrastruct Solut 8:219. https://doi.org/10.1007/s41062-023-01191-w

    Article  Google Scholar 

  9. Kumar P, Kumar A (2023) Analysis of the layered steel-concrete pervious composite beam under moving point load. Innov Infrastruct Solut 8:254. https://doi.org/10.1007/s41062-023-01212-8

    Article  Google Scholar 

  10. Özkılıç YO, Karalar M, Aksoylu C, Beskopylny AN, Stel’makh SA, Shcherban EM et al (2023) Shear performance of reinforced expansive concrete beams utilizing aluminium waste. J Market Res 24:5433–5448. https://doi.org/10.1016/j.jmrt.2023.04.120

    Article  CAS  Google Scholar 

  11. Singh R, Samanta A (2023) A study on cold-formed steel lipped channel flexural members at elevated temperature under various loading scenarios. Int J Steel Struct 23(2):363–388. https://doi.org/10.1007/s13296-022-00699-8

    Article  Google Scholar 

  12. Abd SM, Mhaimeed IS, Tayeh BA, Najm HM, Qaidi S (2023) Investigation of the use of textile carbon yarns as sustainable shear reinforcement in concrete beams. Case Stud Constr Mater 18:e01765. https://doi.org/10.1016/j.cscm.2022.e01765

    Article  Google Scholar 

  13. Brady SP, O’Brien EJ, Žnidarič A (2006) Effect of vehicle velocity on the dynamic amplification of a vehicle crossing a simply supported bridge. J Bridg Eng 11(2):241–249. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:2(241)

    Article  Google Scholar 

  14. Bi K, Ren WX, Cheng PF, Hao H (2015) Domino-type progressive collapse analysis of a multi-span simply-supported bridge: a case study. Eng Struct 90:172–182. https://doi.org/10.1016/j.engstruct.2015.02.023

    Article  Google Scholar 

  15. Shen D, Sun W, Fan W, Huang X, He Y (2022) Behavior and analysis of simply supported bridges under vessel side collisions: implications from collapse of the Taiyangbu Bridge. J Bridg Eng 27(9):04022076. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001922

    Article  Google Scholar 

  16. Fugate ML, Sohn H, Farrar CR (2001) Vibration-based damage detection using statistical process control. Mech Syst Signal Process 15(4):707–721. https://doi.org/10.1006/mssp.2000.1323

    Article  ADS  Google Scholar 

  17. Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit 10(1):83–111. https://doi.org/10.1177/1475921710365419

    Article  Google Scholar 

  18. Avci O, Abdeljaber O, Kiranyaz S, Hussein M, Gabbouj M, Inman DJ (2021) A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications. Mech Syst Signal Process 147:107077. https://doi.org/10.1016/j.ymssp.2020.107077

    Article  Google Scholar 

  19. Katam R, Pasupuleti VDK, Kalapatapu P (2023) A review on structural health monitoring: past to present. Innov Infrastruct Solut 8:248. https://doi.org/10.1007/s41062-023-01217-3

    Article  Google Scholar 

  20. Sahin M, Shenoi RA (2003) Quantification and localisation of damage in beam-like structures by using artificial neural networks with experimental validation. Eng Struct 25(14):1785–1802. https://doi.org/10.1016/j.engstruct.2003.08.001

    Article  Google Scholar 

  21. Li S, Wu Z (2008) A model-free method for damage locating and quantifying in a beam-like structure based on dynamic distributed strain measurements. Comput-Aided Civ Infrastruct Eng 23(5):404–413. https://doi.org/10.1111/j.1467-8667.2008.00545.x

    Article  ADS  Google Scholar 

  22. Umesha PK, Ravichandran R, Sivasubramanian K (2009) Crack detection and quantification in beams using wavelets. Comput-Aided Civ Infrastruct Eng 24(8):593–607. https://doi.org/10.1111/j.1467-8667.2009.00618.x

    Article  Google Scholar 

  23. Reynders E, De Roeck G (2010) A local flexibility method for vibration-based damage localization and quantification. J Sound Vib 329(12):2367–2383. https://doi.org/10.1016/j.jsv.2009.04.026

    Article  ADS  Google Scholar 

  24. Hà NV, Golinval JC (2010) Localization and quantification of damage in beam-like structures using sensitivities of principal component analysis results. Mech Syst Signal Process 24(6):1831–1843. https://doi.org/10.1016/j.ymssp.2010.01.012

    Article  ADS  Google Scholar 

  25. Vafaei M, Alih SC, Rahman ABA, Adnan AB (2014) A wavelet-based technique for damage quantification via mode shape decomposition. Struct Infrastruct Eng 11(7):869–883. https://doi.org/10.1080/15732479.2014.917114

    Article  Google Scholar 

  26. Soman R, Schagerl M, Kralovec C, Schroder KU, Preisler A, Ostachowicz W (2019) Application of Kalman filter based neutral axis tracking for crack length quantification in beam structures. Health Monit Struct Biol Syst XIII 10972:255–264. https://doi.org/10.1117/12.2513859

    Article  Google Scholar 

  27. Le NT, Thambiratnam DP, Nguyen A, Chan THT (2019) A new method for locating and quantifying damage in beams from static deflection changes. Eng Struct 180:779–792. https://doi.org/10.1016/j.engstruct.2018.11.071

    Article  Google Scholar 

  28. Katunin A (2020) Damage identification and quantification in beams using Wigner-Ville distribution. Sensors 20(22):6638. https://doi.org/10.3390/s20226638

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Jiang Y, Wang N, Zhong Y (2021) A two-step damage quantitative identification method for beam structures. Measurement 168:108434. https://doi.org/10.1016/j.measurement.2020.108434

    Article  Google Scholar 

  30. Feng K, González A, Casero M (2021) A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed. Mech Syst Signal Process 154:107599. https://doi.org/10.1016/j.ymssp.2020.107599

    Article  Google Scholar 

  31. Greś S, Döhler M, Mevel L (2021) Statistical model-based optimization for damage extent quantification. Mech Syst Signal Process 160:107894. https://doi.org/10.1016/j.ymssp.2021.107894

    Article  Google Scholar 

  32. Cao L, He WY, Ren WX (2021) Damage localization and quantification for beam bridges based on frequency variation of parked vehicle-bridge systems. Structures 31:357–368. https://doi.org/10.1016/j.istruc.2021.01.098

    Article  Google Scholar 

  33. Masciotta MG, Pellegrini D (2022) Tracking the variation of complex mode shapes for damage quantification and localization in structural systems. Mech Syst Signal Process 169:108731. https://doi.org/10.1016/j.ymssp.2021.108731

    Article  Google Scholar 

  34. Qi Y, Yuan C, Li P, Kong Q (2023) Damage analysis and quantification of RC beams assisted by damage-T generative adversarial network. Eng Appl Artif Intell 117:105536. https://doi.org/10.1016/j.engappai.2022.105536

    Article  Google Scholar 

  35. Padil KH, Bakhary N, Abdulkareem M, Li J, Hao H (2020) Non-probabilistic method to consider uncertainties in frequency response function for vibration-based damage detection using artificial neural network. J Sound Vib 467:115069. https://doi.org/10.1016/j.jsv.2019.115069

    Article  Google Scholar 

  36. Lee YS, Chung MJ (2000) A study on crack detection using eigenfrequency test data. Comput Struct 77(3):327–342. https://doi.org/10.1016/S0045-7949(99)00194-7

    Article  Google Scholar 

  37. Kim JT, Stubbs N (2003) Crack detection in beam-type structures using frequency data. J Sound Vib 259(1):145–160. https://doi.org/10.1006/jsvi.2002.5132

    Article  ADS  Google Scholar 

  38. Xiang J, Liang M, He Y (2014) Experimental investigation of frequency-based multi-damage detection for beams using support vector regression. Eng Fract Mech 131:257–268. https://doi.org/10.1016/j.engfracmech.2014.08.001

    Article  Google Scholar 

  39. Altunışık AC, Okur FY, Kahya V (2017) Structural identification of a cantilever beam with multiple cracks: modeling and validation. Int J Mech Sci 130:74–89. https://doi.org/10.1016/j.ijmecsci.2017.05.039

    Article  Google Scholar 

  40. Sampaio RPC, Maia NMM, Silva JMM (1999) Damage detection using the frequency-response-function curvature method. J Sound Vib 226(5):1029–1042. https://doi.org/10.1006/jsvi.1999.2340

    Article  ADS  Google Scholar 

  41. Dos Santos JA, Soares CM, Soares CM, Maia NMM (2005) Structural damage identification in laminated structures using FRF data. Compos Struct 67(2):239–249. https://doi.org/10.1016/j.compstruct.2004.09.011

    Article  Google Scholar 

  42. Dilena M, Limongelli MP, Morassi A (2015) Damage localization in bridges via the FRF interpolation method. Mech Syst Signal Process 52:162–180. https://doi.org/10.1016/j.ymssp.2014.08.014

    Article  ADS  Google Scholar 

  43. Pandey AK, Biswas M, Samman MM (1991) Damage detection from changes in curvature mode shapes. J Sound Vib 145(2):321–332. https://doi.org/10.1016/0022-460X(91)90595-B

    Article  ADS  Google Scholar 

  44. Whalen TM (2008) The behavior of higher order mode shape derivatives in damaged, beam-like structures. J Sound Vib 309(3–5):426–464. https://doi.org/10.1016/j.jsv.2007.07.054

    Article  ADS  Google Scholar 

  45. Gauthier JF, Whalen TM, Liu J (2008) Experimental validation of the higher-order derivative discontinuity method for damage identification. Struct Control Health Monit 15(2):143–161. https://doi.org/10.1002/stc.210

    Article  Google Scholar 

  46. Li YY (2010) Hypersensitivity of strain-based indicators for structural damage identification: a review. Mech Syst Signal Process 24(3):653–664. https://doi.org/10.1016/j.ymssp.2009.11.002

    Article  ADS  Google Scholar 

  47. Burden RL, Faires JD (2010) Numerical analysis. Brooks/Cole-Cengage Learning, Boston

    Google Scholar 

  48. Sazonov E, Klinkhachorn P (2005) Optimal spatial sampling interval for damage detection by curvature or strain energy mode shapes. J Sound Vib 285(4–5):783–801. https://doi.org/10.1016/j.jsv.2004.08.021

    Article  ADS  Google Scholar 

  49. Yang Y, Liu H, Mosalam KM, Huang S (2013) An improved direct stiffness calculation method for damage detection of beam structures. Struct Control Health Monit 20(5):835–851. https://doi.org/10.1002/stc.1503

    Article  Google Scholar 

  50. Chopra A (2000) Dynamics of structures: theory and applications to earthquake engineering. Pearson, Upper Saddle River

  51. Le NT, Nguyen A, Thambiratnam DP, Chan THT, Khuc T (2020) Locating and quantifying damage in beam-like structures using modal flexibility-based deflection changes. Int J Struct Stab Dyn 20(10):2042008. https://doi.org/10.1142/S0219455420420080

    Article  MathSciNet  Google Scholar 

Download references

Funding

The funding was provided by Ministry of Education, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Roy.

Ethics declarations

Conflict of interest

The authors certify that none of their known financial conflicts of interest or close personal relationships might have affected the research presented in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Appendices

Appendix 1

$$\begin{aligned} \left\langle {\eta_{i} (x),w_{k}^{0} (x)} \right\rangle = & \, \frac{1}{L}\int\limits_{{x_{0} - \frac{b}{2}}}^{{x_{0} + \frac{b}{2}}} {\left( {\frac{{i^{2} k^{2} \pi^{4} }}{{L^{4} }}} \right) \times \sin \left( {\frac{i\pi x}{L}} \right)} \times \sin \left( {\frac{k\pi x}{L}} \right){\text{d}}x \\ { = } & \, \frac{{i^{2} k^{2} \pi^{4} }}{{L^{5} }}\int\limits_{{x_{0} - \frac{b}{2}}}^{{x_{0} + \frac{b}{2}}} {\left[ {\cos \frac{(k - i)\pi x}{L} - \cos \frac{(k + i)\pi x}{L}} \right]} {\text{ d}}x \\ { = } & \, \frac{{i^{2} k^{2} \pi^{4} }}{{L^{5} }}\left[ {\frac{L}{(k - i)\pi }\sin \frac{(k - i)\pi x}{L} - \frac{L}{(k + i)\pi }\sin \frac{(k + i)\pi x}{L}} \right]_{{x_{0} - \frac{b}{2}}}^{{x_{0} + \frac{b}{2}}} \\ { = } & \, \frac{{i^{2} k^{2} \pi^{4} }}{{L^{4} }}\left[ \begin{gathered} \frac{1}{(k - i)\pi }\left\{ {\sin \left( {\frac{(k - i)\pi }{L}\left( {x_{0} + \frac{b}{2}} \right)} \right) - \sin \left( {\frac{(k - i)\pi }{L}\left( {x_{0} - \frac{b}{2}} \right)} \right)} \right\} - \hfill \\ \frac{1}{(k + i)\pi }\left\{ {\sin \left( {\frac{(k + i)\pi }{L}\left( {x_{0} + \frac{b}{2}} \right)} \right) - \sin \left( {\frac{(k + i)\pi }{L}\left( {x_{0} - \frac{b}{2}} \right)} \right)} \right\} \hfill \\ \end{gathered} \right] \\ { = } & \, \frac{{i^{2} k^{2} \pi^{4} }}{{L^{4} }}\left[ \begin{gathered} \frac{2}{(k - i)\pi } \times \cos \left\{ {\left( {k - i} \right)\frac{\pi }{L}x_{0} } \right\} \times \sin \left\{ {\left( {k - i} \right)\frac{\pi b}{{2L}}} \right\} - \hfill \\ \frac{2}{(k + i)\pi } \times \cos \left\{ {\left( {k + i} \right)\frac{\pi }{L}x_{0} } \right\} \times \sin \left\{ {\left( {k + i} \right)\frac{\pi b}{{2L}}} \right\} \hfill \\ \end{gathered} \right] \\ \end{aligned}$$
(35)

For limiting case b <  < L, Equation (35) can be written as,

$$\begin{aligned} \left\langle {\eta_{i} (x),w_{k}^{0} (x)} \right\rangle = & \frac{{i^{2} k^{2} \pi^{4} }}{{L^{4} }}\left[ {\frac{b}{L}\left\{ {\cos \left( {(k - i)\frac{\pi }{L}x_{0} } \right) - \cos \left( {(k + i)\frac{\pi }{L}x_{0} } \right)} \right\}} \right] \\ { = } & \, \frac{{2i^{2} k^{2} \pi^{4} b}}{{L^{5} }}\sin \left( {k\pi \frac{{x_{0} }}{L}} \right)\sin \left( {i\pi \frac{{x_{0} }}{L}} \right) \\ \end{aligned}$$
(36)

Appendix 2

$$\begin{aligned} \sum\limits_{k = 2}^{n} {\frac{{4k^{4} b}}{{\left( {1 - k^{4} } \right)L}}\left\{ {\sin \left( {k\pi \frac{{x_{0} }}{L}} \right)} \right\}^{2} } = & - \sum\limits_{k = 2}^{n} {\frac{4b}{L}\left\{ {\sin \left( {k\pi \frac{{x_{0} }}{L}} \right)} \right\}^{2} } \\ = & - \frac{2b}{L}\sum\limits_{k = 2}^{n} {\left( {1 - \cos \left( {2k\pi \frac{{x_{0} }}{L}} \right)} \right)} \, \\ = & - \frac{2b}{L}\left[ {\left\{ {\sum\limits_{k = 0}^{n} {\left( {1 - \cos \left( {2k\pi \frac{{x_{0} }}{L}} \right)} \right)} } \right\} + \left\{ {1 - 1 + 1 - \cos \left( {2\pi \frac{{x_{0} }}{L}} \right)} \right\}} \right] \\ = = & - \frac{2b}{L}\left[ {\left\{ {\sum\limits_{k = 0}^{n} {\left( {1 - \cos \left( {2k\pi \frac{{x_{0} }}{L}} \right)} \right)} } \right\} + \left\{ {1 - \cos \left( {2\pi \frac{{x_{0} }}{L}} \right)} \right\}} \right] \\ \end{aligned}$$
(37)

The term cosine term in the Eq. (37), can be solved as, (where j is the square root of –1)

$$\sum\limits_{k = 0}^{n} {\cos \left( {2k\pi \frac{{x_{0} }}{L}} \right)} = \sum\limits_{k = 0}^{n} {\frac{{e^{{j2k\pi \frac{{x_{0} }}{L}}} - e^{{ - j2k\pi \frac{{x_{0} }}{L}}} }}{2}} = \frac{1}{2}\left[ {\sum\limits_{k = 0}^{n} {e^{{j2k\pi \frac{{x_{0} }}{L}}} } - \sum\limits_{k = 0}^{n} {e^{{ - j2k\pi \frac{{x_{0} }}{L}}} } } \right]$$
(38)

For large n, Eq. (38), can be calculated as,

$$\begin{aligned} \sum\limits_{k = 0}^{n} {\cos \left( {2k\pi \frac{{x_{0} }}{L}} \right)} = & \frac{1}{2}\left[ {\frac{1}{{1 - e^{{j2\pi \frac{{x_{0} }}{L}}} }} - \frac{1}{{1 - e^{{ - j2\pi \frac{{x_{0} }}{L}}} }}} \right] \\ = & \frac{1}{2}\left[ {\frac{{1 - e^{{ - j2\pi \frac{{x_{0} }}{L}}} + 1 - e^{{j2\pi \frac{{x_{0} }}{L}}} }}{{1 - e^{{j2\pi \frac{{x_{0} }}{L}}} - e^{{ - j2\pi \frac{{x_{0} }}{L}}} + 1}}} \right] = \frac{1}{2} \\ \end{aligned}$$
(39)

Substituting Eq. (39) in Eq. (37), it is found that,

$$\sum\limits_{k = 2}^{n} {\frac{{4k^{4} b}}{{\left( {1 - k^{4} } \right)L}}\left\{ {\sin \left( {k\pi \frac{{x_{0} }}{L}} \right)} \right\}^{2} } = - \frac{2b}{L}\left[ {n + 1 - \frac{1}{2} + 1 - \cos \left( {2\pi \frac{{x_{0} }}{L}} \right)} \right]$$
(40)

Appendix 3

A 3% stiffness decrease is applied to four scenarios, each with a different element size, in order to successfully demonstrate damage quantification. Figure 15a–d displays the results of the suggested damage quantification algorithm for a unit-length beam in examples AC1–AC4 with single damage as specified in Table 3. The damage quantification is successfully achieved with an error of 0.664% for case AC1, 0.304% for case AC2, 0.163% for case AC3, and 0.125% for case AC4.

Fig. 15
figure 15

Comparison of calculated stiffness reduction (CSR) and actual stiffness reduction (ASR) for 3% stiffness loss across varying element sizes and damage region (DR): a 10 elements, DR: 0.20–0.30, b 20 elements, DR: 0.25–0.30, c 50 elements, DR: 0.28–0.30, d 100 elements, DR: 0.29–0.30

Table 3 Cases involving single damage

Using the suggested approach for damage quantification, a 1% drop in stiffness for each of the four examples with different elements is successfully established. Figure 16a–d shows the outcomes of the suggested damage quantification algorithm for a unit-length beam in examples AC5–AC8, each of which involves a single damage location as specified in Table 3. The damage quantification is accomplished, exhibiting an accuracy of 0.199% for case AC5, 0.080% for case AC6, 0.033% for case AC7, and 0.021% for case AC8.

Fig. 16
figure 16

Comparison of calculated stiffness reduction (CSR) and actual stiffness reduction (ASR) for 1% stiffness loss across varying element sizes and damage region (DR): a 10 elements, DR: 0.20–0.30, b 20 elements, DR: 0.25–0.30, c 50 elements, DR: 0.28–0.30, d 100 elements, DR: 0.29–0.30

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridi, M.A., Roy, K. & Singhal, V. Damage quantification in beam-type structures using modal curvature ratio. Innov. Infrastruct. Solut. 9, 44 (2024). https://doi.org/10.1007/s41062-023-01353-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-023-01353-w

Keywords

Navigation