Skip to main content
Log in

Stochastic stability and dynamics of a two-dimensional structurally nonlinear airfoil in turbulent flow

  • Nonlinear Dynamics, Identification and Monitoring of Structures
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present study considers the application of stochastic dimensional reduction (low-dimensional approximation of stochastic dynamical systems) to a 11-dimensional nonlinear aeroelastic problem exhibiting a Hopf bifurcation, with one critical mode and several stable modes. The analysis is performed close to the critical value of the bifurcation parameter (the freestream airspeed) that induces flutter in a 2-D airfoil. The system is excited by multiplicative and additive real noise processes whose power spectral densities are given by the Dryden wind turbulence model. The homogenization procedure yields a two dimensional Markov process characterized by a generator. Further simplification yields a one dimensional stochastic differential equation that characterizes the amplitude of the critical mode of the original system. This simplified low-dimensional coarse-grained model, which captures the essential stochastic dynamics close to flutter instability, is used to efficiently simulate the long-term statistics of the slow variables. The explicit forms of the homogenized drift and diffusion coefficients of the reduced stochastic differential equation are determined. The explicit formulas contain both the stochastic perturbations in the unstable and stable modes as well as the action of the nonlinear terms. The reduced order (coarse-grained) model is verified by comparison of distribution functions, obtained computationally, with the original system. Additionally, the top Lyapunov exponent found analytically compares well with the exponent obtained by numerical experiments using the original system. This analysis provides a transparent medium for applying the homogenization procedure and may be of interest to aircraft designers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Belcastro CM, Foster JV (2010) Aircraft loss-of-control accident analysis. In: AIAA guidance, navigation, and control conference, Toronto, Canada

  2. Lee BHK, Gong L, Wong YS (1997) Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity. J Fluids Struct 11:225–246

    Article  ADS  Google Scholar 

  3. Poirel D, Price SJ (2007) Bifurcation characteristics of a two-dimensional structurally non-linear airfoil in turbulent flow. Nonlinear Dyn 48:423–435

    Article  MathSciNet  MATH  Google Scholar 

  4. Namachchivaya NS, Van Roessel HJ (2004) Averaging of noisy nonlinear systems with rapidly oscillating and decaying components. Nonlinear Dyn 36:329–347

    Article  MathSciNet  MATH  Google Scholar 

  5. Fung YC (1955) An introduction to the theory of aeroelasticity. Wiley, New York

    Google Scholar 

  6. Yeager JC (1998) Implementation and testing of turbulence models for the f18-harv simulation. Lockheed Martin Engineering and Sciences, NASA CR-1998-206937

  7. Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  MATH  Google Scholar 

  8. Ethier SN, Kurtz TG (1986) Markov processes: characterization and convergence. Wiley, Hoboken

    Book  MATH  Google Scholar 

  9. Wagner H (1925) Uber die Entstehung des dynamischen Auftriebes von Tragfugeln. ZAMM J Appl Math Mech/Z Angew Math Mech 5:17–35

    Article  MATH  Google Scholar 

  10. Theodorsen T, Mutchler WH (1935) General theory of aerodynamic instability and the mechanism of flutter. NACA Report 496

  11. Singh, P (2014) Fluid-structure interaction in noisy nonlinear systems. M.S. Thesis, University of Illinois-Urbana Champaign

  12. Dinyavari MAH, Friedmann PP (1986) Application of time-domain unsteady aerodynamics to rotary-wing aeroelasticity. AIAA J 24:1424–1432

    Article  ADS  Google Scholar 

  13. Friedmann PP (1987) Arbitrary motion unsteady aerodynamics and its application to rotary-wing aeroelasticity. J Fluids Struct 1:71–93

    Article  MATH  Google Scholar 

  14. Friedmann P, Robinson LH (1990) Influence of unsteady aerodynamics on rotor blade aeroelastic stability and response. AIAA J 28:1806–1812

    Article  ADS  Google Scholar 

  15. Greenberg JM (1947) Airfoil in sinusoidal motion in a pulsating stream. NACA Technical Note 1326, National Advisory Committee for Aeronautics, Langley Aeronautical Lab., Langley Field, VA

  16. Kussner HG (1936) Zusammenfassender Bericht uber den instationaren Auftrieb von Flugeln. Luftfahrtforschung 13:410–424

    MATH  Google Scholar 

  17. Jones RT (1940) The unsteady lift of a wing of finite aspect ratio. NACA Report 681

  18. Leishmann JG (1994) Unsteady lift of a flapped airfoil by indicial concepts. J Aircr 31:288–297

    Article  Google Scholar 

  19. Van der Wall BG, Leishman JG (1994) On the influence of time varying flow velocity on unsteady aerodynamics. J Am Helicopter Soc 39:25–36

    Article  Google Scholar 

  20. Papanicolaou GC, Stroock D, Varadhan SRS (1977) Martingale approach to some limit theorems. Papers from the Duke Turbulence Conference, Duke University, Durham, NC, Paper No. 6

  21. Arnold L, Namachchivaya N Sri, Schenk-Hoppe KR (1996) Toward an understanding of stochastic Hopf bifurcation: a case study. Int J Bifurc Chaos 6:1947–1975

    Article  MathSciNet  MATH  Google Scholar 

  22. Talay D (1991) Approximation of upper Lyapunov exponents of bilinear stochastic differential systems. SIAM J Numer Anal 28:1141–1164

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin YK, Ariaratnam ST (1988) Stability of bridge motion in turbulent winds. J Struct Mech 8:1–15

    Article  MathSciNet  Google Scholar 

  24. Namachchivaya NS, Vedula L (2000) Stabilization of linear systems by noise: application to flow induced oscillations. Dyn Stab Syst 15:185–208

    Article  MathSciNet  MATH  Google Scholar 

  25. Baxendale PH (1986) Asymptotic behaviour of stochastic flows of diffeomorphisms: two case studies. Probab Theory Relat Fields 73:51–85

    Article  MathSciNet  MATH  Google Scholar 

  26. Namachchivaya NS, Lin YK (1988) Application of stochastic averaging for system with high damping. Probab Eng Mech 3(1988):185–196

    Google Scholar 

  27. Karatzas I, Shreve SE (1988) Brownian motion and stochastic calculus. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the AFOSR under Grant Number FA9550-12-1-0390 and the National Science Foundation under Grant Number CMMI 1030144. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the AFOSR or the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navaratnam Sri Namachchivaya.

Appendices

Appendix 1

The terms in (2.10) of Sect. 2 are as follows:

$$\begin{aligned} \begin{bmatrix} M \end{bmatrix}&= \begin{bmatrix} 1+\frac{a_h^2+\frac{1}{8}}{\mu r_\alpha ^2}&\frac{x_\alpha }{r_\alpha ^2}-\frac{a_h}{\mu r_\alpha ^2}&0&0\\ x_\alpha -\frac{a_h}{\mu }&1+\frac{1}{\mu }&0&0 \\ 0&0&1&0 \\ 0&0&0&1 \end{bmatrix}, \\ \left[ {\begin{array}{c} {D(\tau )} \\ \end{array} } \right] &= \left[ {\begin{array}{cccc} {\frac{{u^{\epsilon } \left( {\frac{1}{2} - a_{h} } \right)^{2} }}{{\mu r_{\alpha }^{2} }}} & { - \frac{{u^{\epsilon } \left( {\frac{1}{2} + a_{h} } \right)}}{{\mu r_{\alpha }^{2} }}} & { - \frac{{2u^{\epsilon } \left( {\frac{1}{2} + a_{h} } \right)\left( {A_{1}^{W} b_{1}^{W} + A_{2}^{W} b_{2}^{W} } \right)}}{{\mu r_{\alpha }^{2} }}} & { - \frac{{2\left( {\frac{1}{2} + a_{h} } \right)\left( {A_{1}^{K} b_{1}^{K} + A_{2}^{K} b_{2}^{K} } \right)}}{{\mu r_{\alpha }^{2} }}} \\ {\frac{{u^{\epsilon } \left( {\frac{3}{2} - a_{h} } \right)}}{\mu }} & {\frac{{u^{\epsilon } }}{\mu }} & {\frac{{2u^{\epsilon } \left( {A_{1}^{W} b_{1}^{W} + A_{2}^{W} b_{2}^{W} } \right)}}{\mu }} & {\frac{{2\left( {A_{1}^{K} b_{1}^{K} + A_{2}^{K} b_{2}^{K} } \right)}}{\mu }} \\ {a_{h} - \frac{1}{2}} & { - 1} & {b_{1}^{W} + b_{2}^{W} } & 0 \\ 0 & 0 & 0 & {b_{1}^{K} + b_{2}^{K} } \\ \end{array} } \right],\\ \begin{bmatrix} K(\tau )\end{bmatrix}&= \left[ \begin{array}{ccc} \frac{1}{U_m^2} - \frac{(u^{\epsilon })^2\left( \frac{1}{2}+a_h\right) }{\mu r_\alpha ^2} &{} 0 \\ \frac{(u^{\epsilon })^2}{\mu } &{} \frac{\left( \omega _h/\omega _\alpha \right) ^2}{U_m^2} \\ -u^{\epsilon } &{} 0 \\ 0 &{} 0 \end{array}\right. \left. \begin{array}{cc} -\frac{{(u^{\epsilon })^2\left( \frac{1}{2}+a_h\right) b_1^{W} b_2^W}}{\mu r_\alpha ^2} &{} -\frac{2\left( \frac{1}{2}+a_h\right) b_1^Kb_2^K}{\mu r_\alpha ^2} \\ \frac{u^{\epsilon } b_1^Wb_2^W}{\mu } &{} \frac{2b_1^Kb_2^K}{\mu } \\ b_1^Wb_2^W &{} 0 \\ 0 &{} b_1^Kb_2^K \end{array}\right] ,\\ \begin{bmatrix} K_3 \end{bmatrix}&= \begin{bmatrix} \frac{K_3}{U_m^2}&0&0&0 \\ 0&0&0&0 \\ 0&0&0&0 \\ 0&0&0&0 \end{bmatrix}, \end{aligned}$$

where \(u^{\epsilon }\mathop {=}\limits ^{\mathrm{def}}1+\epsilon u_T(\tau )\), \(w^{\epsilon }:=\epsilon \hbox {w}_T(\tau )\), and \(\omega _h\) and \(\omega _\alpha \) are the natural frequencies of heave and pitch [frequencies of the solutions to the decoupled, unforced Eq. (2.1)].

As mentioned in Sect. 2, the damping and stiffness matrices [D] and [K] can be decomposed into their respective time invariant and time varying components:

$$\begin{aligned}{}[D(\tau )]&= [D_0] + \epsilon u_T (\tau ) [D_1], \\ [K(\tau )]&= [K_0] + \epsilon u_T (\tau ) [K_1], \end{aligned}$$

where

$$\begin{aligned} \begin{bmatrix} D_0 \end{bmatrix}&= \left[\begin{array}{cccc} \frac{\left( \frac{1}{2}-a_h\right) ^2}{\mu r_\alpha ^2} &-\frac{\left( \frac{1}{2}+a_h\right) }{\mu r_\alpha ^2} & -\frac{2\left( \frac{1}{2}+a_h\right) \left( A_1^Wb_1^W+A_2^Wb_2^W\right) }{\mu r_\alpha ^2}& -\frac{2\left( \frac{1}{2}+a_h\right) \left( A_1^Kb_1^K+A_2^Kb_2^K\right) }{\mu r_\alpha ^2}\\ \frac{\left( \frac{3}{2}-a_h\right) }{\mu } & \frac{1}{\mu } & \frac{2\left( A_1^Wb_1^W+A_2^Wb_2^W\right) }{\mu } & \frac{2\left( A_1^Kb_1^K+A_2^Kb_2^K\right) }{\mu }\\ a_h-\frac{1}{2} & -1 & b_1^W+b_2^W & 0\\ 0 & 0 & 0& b_1^K+b_2^K \end{array}\right] , \\ \begin{bmatrix} D_1 \end{bmatrix}&=\left[ \begin{array}{cc} \frac{\left( \frac{1}{2}-a_h\right) ^2}{\mu r_\alpha ^2} & -\frac{\left( \frac{1}{2}-a_h\right) }{\mu r_\alpha ^2} \\ \frac{1}{\mu }\left( \frac{3}{2}-a_h\right) & \frac{1}{\mu } \\ 0 & 0 \\ 0 & 0 \end{array}\right. \left. \begin{array}{cc} -\frac{2\left( \frac{1}{2}+a_h\right) \left( A_1^Wb_1^W+A_2^Wb_2^W\right) }{\mu r_\alpha ^2} & 0\\ \frac{2\left( A_1^Wb_1^W+A_2^Wb_2^W\right) }{\mu } & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right] , \\ \begin{bmatrix} K_0 \end{bmatrix}&=\left[ \begin{array}{cc} \frac{1}{U_m^2} - \frac{\left( \frac{1}{2}+a_h\right) }{\mu r_\alpha ^2}& 0\\ \frac{1}{\mu } & \frac{\left( \omega _h/\omega _\alpha \right) ^2}{U_m^2} \\ -1 & 0 \\ 0 & 0\end{array}\right. \left. \begin{array}{cc} -\frac{\left( \frac{1}{2}+a_h\right) b_1^Wb_2^W}{\mu r_\alpha ^2} & -\frac{2\left( \frac{1}{2}+a_h\right) b_1^Kb_2^K}{\mu r_\alpha ^2}\\ \frac{u^{\epsilon } b_1^Wb_2^W}{\mu } & \frac{2b_1^Kb_2^K}{\mu } \\ b_1^Wb_2^W & 0 \\ 0 & b_1^Kb_2^K \end{array}\right] , \\ \begin{bmatrix} K_1 \end{bmatrix}&= \left[ \begin{array}{cccc} - \frac{2\left( \frac{1}{2}+a_h\right) }{\mu r_\alpha ^2} & 0 & -\frac{2\left( \frac{1}{2}+a_h\right) b_1^Wb_2^W}{\mu r_\alpha ^2} & 0 \\ \frac{2}{\mu } & 0 & \frac{b_1^Wb_2^W}{\mu } & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] . \end{aligned}$$

The coefficient matrices in (2.11) of Sect. 2 are as follows:

$$\begin{aligned} \left[ A_0\right]= & {} \left[ Z\right] ^{-1}\left[ L\right] , \quad \left[ B_0\right] = \left[ Z\right] ^{-1}\left[ Q\right] , \\ \left[ C_0\right]= & {} \left[ Z\right] ^{-1}\left[ G\right] , \quad \left[ \hat{N}\right] = \left[ Z\right] ^{-1}\left[ N\right] , \end{aligned}$$

where

$$\begin{aligned} {[}Z]= & {} \begin{bmatrix} I&0 \\ 0&[M] \end{bmatrix}, \quad [L]= \begin{bmatrix} 0&I \\ -[K_0]&-[B_0] \end{bmatrix},\\ {[}Q]= & {} \begin{bmatrix} 0&0 \\ {-[K_1]}&{-[D_1]} \end{bmatrix}\quad [G]=\begin{bmatrix} 0&0 \\ -[K_3]&0 \end{bmatrix} \\ {[}N]= & {} \begin{bmatrix} 0 \\ 0 \\ 0 \\ \hbox {w}_T\end{bmatrix}. \end{aligned}$$

The terms in (2.13) of Sect. 2 are as follows:

$$\begin{aligned}&{\bar{b}}^0\left( {v^{\epsilon }_{\tau }}, U_m^c\right) = \left[ S A_0\left( U_m^c\right) T\right] \, {v^{\epsilon }_{\tau }}= \left[ A\left( U_m^c\right) \right] {v^{\epsilon }_{\tau }},\\&{\bar{b}}^1\left( {v^{\epsilon }_{\tau }}, u_T(\tau ), \hbox {w}_T (\tau )\right) = \wp [S] [\hat{N}] + [S B_0T] u_T (\tau ) {v^{\epsilon }_{\tau }}\\&\quad = \wp [\chi ] + [\bar{B}] u_T (\tau ) {v^{\epsilon }_{\tau }}, \\&{\bar{b}}^2\left( {v^{\epsilon }_{\tau }}, U_m^c\right) = \left[ F u_{\tau }^{\epsilon }+ G \left( {v^{\epsilon }_{\tau }}\right) ^3\right] ,\\&F =\beta \left[ S A_0 '\left( U_m^c\right) T\right] = \beta \left[ A '\left( U_m^c\right) \right] ,\\&G = [S] [C_0], \\&\left( {v^{\epsilon }_{\tau }}\right) ^3 = \left[ \left( \sum _{i=1}^{8}T_{1i} v_{\tau }^{\epsilon , (i)}\right) ^3, \dots ,\left( \sum _{i=1}^{8}T_{8i} v_{\tau }^{\epsilon ,(i)}\right) ^3\right] ^T,\\&[\chi ] = \hbox {w}_T(\tau ) [S_{18}, \dots , S_{88}]^T, \hbox {where} \ [S] = [T]^{-1}. \end{aligned}$$

Due to the block diagonal form of the linear operator, \(A(U_m^c)\), we can write

$$\begin{aligned} A\left( U_m^c\right)&= \left[ \begin{array}{lll}B &{} 0 &{} 0\\ 0 &{} R &{} 0\\ 0 &{} 0 &{} C\end{array}\right] , \,\hbox {where}\, B = \left[ \begin{array}{cc}0 &{} -\omega _0\\ \omega _0 &{} 0\end{array}\right] , \,\omega _0\in \mathbb {R}^{+}\\ R&= \begin{bmatrix}-\kappa&-\gamma \\ \ \gamma&-\kappa \end{bmatrix}, \,\hbox {and}\, C = \hbox {diag}(\lambda _i),\lambda _{i}<0, i=1,\dots ,4. \end{aligned}$$

The remaining terms are

$$\begin{aligned} A'\left( U_m^c\right) = \left[ \begin{array}{ll}D &{} E\\ H &{} J\end{array}\right] , [\bar{B}] = \left[ \begin{array}{ll}\bar{K} &{} \bar{M} \\ \bar{ N} &{} \bar{L}\end{array}\right] , G \left( u_{\tau }^{\epsilon }\right) ^3 = \left[ \begin{array}{l}\bar{g}_1 \left( u_{\tau }^{\epsilon }\right) \\ \vdots \\ \bar{g}_8 \left( u_{\tau }^{\epsilon }\right) \end{array}\right] , \end{aligned}$$

where D and \(\bar{K}\) are \(2\times 2\) matrices, E and \(\bar{M}\) are \(2\times 6\) matrices, H and \(\bar{N}\) are \(6\times 2\) matrices, and J, \(\bar{L}\) are \(6\times 6\) matrices, and

$$\begin{aligned} \bar{g}_m (x) \mathop {=}\limits ^{\mathrm{def}}{\hat{g}}_{m:ijk} x_i x_j x_k = {\hat{g}}_{m:111} x_1^3 + {\hat{g}}_{m:222} x_2^3+ 3{\hat{g}}_{m:122} x_1 x_2^2 + 3 {\hat{g}}_{m:112} x_1^2x_2 \end{aligned}$$

for \(m = 1,\dots ,8\), and \({\hat{g}}_{m:ijk}\) are constants.

Appendix 2

Here, we describe the calculations involved in Sect. 3.2. Substituting the expansion (3.6) into (3.5), we have a set of Poisson equations at increasing orders of \(\epsilon \):

$$\begin{aligned} \begin{aligned} \mathscr {L}_{F}^{(y,\theta ,z)} u_0(x,y,\theta ,z,\tau )&= b^{0}(y) \frac{\partial u_0}{\partial y}(x,y,\theta ,z,\tau ) +\omega _0 \frac{\partial u_0}{\partial \theta }(x,y,\theta ,z,\tau ) \\&\quad +\,\mathcal {G}u_0(x,y,\theta ,z,\tau ) = 0, \\ \mathscr {L}_{F}^{(y,\theta ,z)} u_1(x,y,\theta ,z,\tau )&= -a^0(x,y,\theta ,z) \frac{\partial u_0}{\partial x} (x,y,\theta ,z,\tau ) \\&\quad -\, b^{1}(x,y,\theta ,z) \frac{\partial u_0}{\partial y} (x,y,\theta ,z,\tau ), \\ \mathscr {L}_{F}^{(y,\theta ,z)} u_2(x,y,\theta ,z,\tau )&= -a^0(x,y,\theta ,z) \frac{\partial u_1}{\partial x} (x,y,\theta ,z,\tau ) \\&\quad - \,\,b^{1}(x,y,\theta ,z) \frac{\partial u_1}{\partial y} (x,y,\theta ,z,\tau ) \\&\quad - \,\left( a^{1}(x,y,\theta ) \frac{\partial u_0}{\partial x}(x,y,\theta ,z,\tau ) \right. \\&\quad \left. + \,b^{2}(x,y,\theta ) \frac{\partial u_0}{\partial y}(x,y,\theta ,z,\tau ) - \frac{\partial u_0}{\partial \tau }(x,y,\theta ,z,\tau )\right) , \\&\vdots \end{aligned} \end{aligned}$$
(7.1)

Since \(\mathcal {G}\) is an operator in z alone, it is clear from the first equation of (7.1) that \(u_0(x,y,\theta ,z,\tau )=u(x,\tau )\). Thus, the second and third equations of (7.1) simplifies to

$$\begin{aligned} \begin{aligned} \mathscr {L}_{F}^{(y,\theta ,z)} u_1(x,y,\theta ,z,\tau )&= -a^0(x,y,\theta ,z) \frac{\partial u}{\partial x} (x,\tau ), \\ \mathscr {L}_{F}^{(y,\theta ,z)} u_2(x,y,\theta ,z,\tau )&= -a^0(x,y,\theta ,z) \frac{\partial u_1}{\partial x} (x,y,\theta ,z,\tau ) \\&\quad - b^{1}(x,y,\theta ,z) \frac{\partial u_1}{\partial y} (x,y,\theta ,z,\tau ) \\&\quad - \left( a^{1}(x,y,\theta ) \frac{\partial u}{\partial x}(x,\tau ) - \frac{\partial u}{\partial \tau }(x,\tau )\right) . \\ \end{aligned}\end{aligned}$$
(7.2)

We first investigate the \(\mathcal O(\frac{1}{\epsilon ^2})\) dynamics in (3.3) to obtain the transient and invariant measures of the fast generator \(\mathscr {L}_F^{y,\theta ,z}\). Let us denote by \(\psi _{\tau }\) the flow map induced by the deterministic vector field \(b^{0} (y)\) of (3.3), i.e. \(\psi _{\tau }(y)\) is the flow of \(Y^{\epsilon }\) starting from y if it was driven only by the \(\mathcal O(\frac{1}{\epsilon ^2})\) dynamics. The transient measure is a delta measure centered at \(\psi _{\tau }(y)\): \(\delta _{\psi _{\tau }(y)}(\eta )\). Since the vector field is asymptotically stable, we can associate a measure defined by the following limit

$$\begin{aligned} \delta _{\infty }(\eta ) = \delta _{0}(\eta ) \mathop {=}\limits ^{\mathrm{def}}\lim _{\tau \rightarrow \infty } \delta _{_{\psi _s(y)}}(\eta ). \end{aligned}$$

For the \(\theta ^{\epsilon }\) process, all orbits live on a circle whose radius is dictated by the values of the initial conditions \(x_1\) and \(x_2\) of the process \(X_{\tau }^{\epsilon }\). More precisely, contained in a closed orbit, we can associate a measure defined by the following limit

$$\begin{aligned} \delta _{\infty }(\xi )=\frac{1}{2\pi }= \lim _{\tau \rightarrow \infty } \frac{1}{\tau } \int _0^\tau \delta _{{\theta + \omega _0 s}}(\xi ) \; ds. \end{aligned}$$

For the noise process, it is natural to obtain the final results in terms of the spectral densities of the input noise \(Z^{\epsilon }\) whose generator is \(\mathcal {G}\). To this end, we express the solution in terms of the Green’s function \(g(\zeta ,\tau ;z,0)\) for \(\mathcal {G}^{*}\). The Green’s function for \(\mathcal {G}^{*}\) is the solution of

$$\begin{aligned} \frac{\partial g}{\partial \tau } = \mathcal {G}^{*}g, \quad g(\zeta ,0;z,0) = \delta _0(z-\zeta ). \end{aligned}$$

Since they are independent, the transient density of the \(\mathcal O(\frac{1}{\epsilon ^2})\) components is

$$\begin{aligned} p_s(y, \theta ,z, \eta ,\xi ,\zeta ) = \delta _{_{\psi _s(y)}}(\eta ) \cdot \delta _{_{\omega _0 s + \theta }}(\xi ) \cdot g(\zeta ,s;z,0). \end{aligned}$$

Now we are in a position to evaluate the PDEs (7.2). The coefficients \(a^0(x,y,\theta ,z)\) and \(b^{1}(x,y,\theta ,z)\) in (3.3) are both linearly dependent on the process \(Z^{\epsilon }\), which invariant distribution has zero mean, so

$$\begin{aligned} \mathbb {E}\left[ a^0(x,Y^{\epsilon },\theta ^{\epsilon },Z^{\epsilon })\right] =\mathbb {E}\left[ b^{1}(x,Y^{\epsilon },\theta ^{\epsilon },Z^{\epsilon })\right] =0, \end{aligned}$$

where \(\mathbb {E}[\cdot ]\) is expectation with respect to the invariant density \(p_\infty \). Thus, the Fredholm alternative implies that the first equation of (7.2) has a bounded solution. Now employing the Feynman–Kac formula (see, for example, Chapter 5 of Karatzas and Shreve [27]) and defining

$$\begin{aligned} u_{x}^{\prime }(x,\tau )\mathop {=}\limits ^{\mathrm{def}}\frac{\partial u}{\partial x} (x,\tau ), \quad h(x,y,\theta ,z;\tau ) \mathop {=}\limits ^{\mathrm{def}}a^0(x,y,\theta ,z) u_{x}^{\prime }, \end{aligned}$$

the bounded solution of the first equation of (7.2) is given by

$$\begin{aligned} u_1(x,y,\theta ,z,\tau )= \mathbb{E}_{y,\theta ,z}\left[ \int _0^\infty h\left( Y_s^x,\theta ^x_s,Z_s^x; x,\tau \right) \, ds\right] = \int _0^\infty ds \; \int _{\mathbb {R}^6} \int _{\mathbb{S}} \int _{\mathbb{R}^3} a^0(x,\eta ,\xi ,\zeta ) u_{x}^{\prime } (x,\tau ) p_s(\eta ,\xi ,\zeta ; y,\theta ,z) \; d\eta d\xi d\zeta , \end{aligned} $$
(7.3)

where x and \(\tau \) are parameters and the transient density does not depend on x due to the fact that the fast components of \(Y^{\epsilon }, \theta ^{\epsilon }, Z^{\epsilon }\) are independent of the slow process \(X^{\epsilon }\). Furthermore, we note once again that y, \(\theta \) and z represent the starting points of the processes \(Y^{\epsilon }_{\tau }, \theta ^x_{\tau }, Z^{\epsilon }_{\tau }\) respectively. Since \(\mathbb {E}\left[ a^0(x,Y^{\epsilon },\theta ^{\epsilon },Z^{\epsilon })\right] =0\) (see above), the centering condition is automatically satisfied:

$$\begin{aligned} \int _{\mathbb {R}^6} \int _{\mathbb {S}} \int _{\mathbb {R}^3} h(\eta ,\xi ,\zeta ; x,\tau ) \ p_{\infty }(\eta ,\xi ,\zeta ) \; d\eta d\xi d\zeta = 0. \end{aligned}$$

Making use of the above expression for the transient density, (7.3) can be written as

$$\begin{aligned} u_1(x,y,\theta ,z,\tau ) = \int _0^\infty \int _{\mathbb {R}^6} \int _{\mathbb {S}} \int _{\mathbb {R}^3} a^0(x,\eta ,\xi ,\zeta ) u_{x}^{\prime } (x,\tau ) \delta _{_{\psi _s(y)}}(\eta ) \cdot \delta _{_{\omega _0 s + \theta }}(\xi ) \cdot g(\zeta ,s;z,0) \; d\eta d\xi d\zeta . \end{aligned}$$

Now, let us consider the last of the Poisson equations in (7.2) more carefully:

$$\begin{aligned} \mathscr {L}_{F}^{(y,\theta ,z)} u_2(x,y,\theta ,z,\tau )= -a^0_{j}(x,y,\theta ,z) \frac{\partial u_1}{\partial x_{j}} (x,y,\theta ,z,\tau ) - b^{1}_{j}(x,y,\theta ,z) \frac{\partial u_1}{\partial y_{j}} (x,y,\theta ,z,\tau ) - \left( a^{1}_{j}(x,y,\theta ) \frac{\partial u}{\partial x_{j}}(x,\tau ) - \frac{\partial u}{\partial \tau }(x,\tau )\right) . \end{aligned}$$
(7.4)

Note that the transient and invariant measures are not functions of the slow variable x, but only of the initial point \((y,\theta ,z)\). Keeping this in mind and integrating with respect to \(\eta (=y)\) and \(\xi (=\theta )\) we can rewrite (7.4) as

$$\begin{aligned} \mathscr {L}_{F}^{(y,\theta ,z)} u_2(x,y,\theta ,z,\tau ) = -a^0_{j}(x,y,\theta ,z) \int _0^\infty ds \left( \int _{\zeta \in \mathbb {R}^3} \left( \frac{\partial a^0_i}{\partial x_{j}} \left( x,{\psi _s(y)},{\omega _0 s + \theta },\zeta \right) u_{x_{i}}^{\prime } (x,\tau ) + a^0_{i} \left( x,{\psi _s(y)},{\omega _0 s + \theta },\zeta \right) u_{x_{i}x_{j}}^{\prime \prime } (x,\tau )\right) g(\zeta ,s;z,0) \; d\zeta \right) - b^{1}_{j}(x,y,\theta ,z) \int _0^\infty ds \; \frac{\partial }{\partial y_{j}} \left( \int _{\zeta \in \mathbb {R}^3} a^0_{i}(x,{\psi _s(y)},{\omega _0 s + \theta },\zeta ) u_{x_{i}}^{\prime } (x,\tau ) g(\zeta ,s;z,0) \; d\zeta \right) - \left( a^{1}_{j}(x,y,\theta ) \frac{\partial u}{\partial x_{j}}(x,\tau ) - \frac{\partial u}{\partial \tau }(x,\tau )\right) =: \varphi (x,y,\theta ,z,\tau ). \end{aligned}$$

Applying the solvability condition \(\left\langle \varphi (x,y,\theta ,z,\tau ), p_{\infty }(y,\theta ,z) \right\rangle = 0\), where \(p_{\infty }(y,\theta ,z)\) is in the kernel of \(\mathscr {L}_{F}^{(y,\theta ,z)}\):

$$\begin{aligned} &-\int _{\mathbb {R}^6} \int _{\mathbb {S}}\int _{\mathbb {R}^3} a^0_{j}(x,y,\theta ,z) p_{\infty }(y,\theta ,z) \int _0^\infty ds \left\{ \int _{\zeta \in \mathbb {R}^3} \left( \frac{\partial a^0_{i}}{\partial x_{j}} (x,{\psi _s (y)},{\omega _0 s + \theta },\zeta ) u_{x_{i}}^{\prime } (x,\tau )\right. \right. \left. \left. + a^0_i (x,{\psi _s (y)},{\omega _0 s + \theta },\zeta ) u_{x_{i}x_{j}}^{\prime \prime } (x,\tau )\right) \right. \left. g(\zeta ,s;z,0) \; d\zeta \right) \; dy d\theta dz \\&- \int _{\mathbb {R}^6} \int _{\mathbb {S}} \int _{\mathbb {R}^3} b^{1}_{j}(x,y,\theta ,z) p_{\infty }(y,\theta ,z) \int _0^\infty ds \left( \int _{\zeta \in \mathbb {R}^3} \frac{\partial a^0_{i}}{\partial \zeta _{l}} (x,\zeta ,{\omega _0 s + \theta },\zeta )|_{\zeta ={\psi _s(y)}} \frac{\partial {\psi _s^{l}(y)}}{\partial y_j} u_{x_{i}}^{\prime } (x,\tau ) g(\zeta ,s;z,0) \; d\zeta \right) dy d\theta dz \\&- \int _{\mathbb {R}^6} \int _{\mathbb {S}}\int _{\mathbb {R}^3} p_{\infty }(y,\theta ,z) \left( a^{1}_{j}(x,y,\theta ) \frac{\partial u}{\partial x_{j}}(x,\tau ) - \frac{\partial u}{\partial \tau }(x,\tau )\right\} dy d\theta dz = 0. \end{aligned}$$
(7.5)

Equation (7.5) yields the homogenized equation for \(u(x,\tau )\).

We now provide a brief overview of the computation involved at this point. The complete details can be found in Singh [11]. In order to simplify the calculations further, we look at \({\bar{b}}^1 (v^{\epsilon }, u_T,\hbox {w}_T)\), \({\bar{b}}^2 (v^{\epsilon },U_m^c)\) in (2.13) and note the change of coordinates in (3.2) that motivates an appropriate structure for the variables \(a^0(x,y,\theta ,z)\), \(b^{1}(x,y,\theta ,z)\), \(a^{1}(x,y,\theta )\). These variables are defined in terms of the matrices \(\bar{K}\), \(\bar{M}\), S, \(\bar{N}\), \(\bar{L}\), D as given in (2.13) as well as in terms of functions of the respective noise processes: \(\varphi _1 (u_T)\), \(\varphi _2 (c,\hbox {w}_T)\). Furthermore, the invariant measure is given as

$$\begin{aligned} p_{\infty }(y,\theta ,z)=\frac{\delta _{0}(y) \cdot \nu _1(z_1) \cdot \nu _2(z_2,z_3)}{2 \pi }, \end{aligned}$$

where \(\nu _1\cdot \nu _2\) is the invariant measure of the real noise process, which are independent. The transition density of the noise process can be decomposed as

$$\begin{aligned} g(\zeta ,s;z,0) = g_1 (\zeta _1,s;z_1,0) \cdot g_2 (\zeta _2,\zeta _3,s;z_2,z_3,0). \end{aligned}$$

We treat \(\left( \zeta _2,\zeta _3\right) \) in \(g_2(\zeta _2,\zeta _3,s;z,0)\) as one quantity in the analysis that follows.

We then integrate out both y and \(\theta \) variables, respectively, in the solvability condition that follows from the previous remarks. We further note that the cross terms between \(\varphi _1 (u_T)\), \(\varphi _2 (c,\hbox {w}_T)\) have been dropped because of the independence between the horizontal and vertical noise. Additionally, we define the covariances (time correlation) in terms of functions of the respective noise processes \(\varphi _1 (u_T)\), \(\varphi _2 (c,\hbox {w}_T)\) as

$$\begin{aligned}\mathscr {R}_{\varphi _1}(s) \mathop {=}\limits ^{\mathrm{def}}&\mathbb {E}[\varphi _1 (u_T(\tau ))\varphi _1 (u_T({\tau +s}))] = \int _{\mathbb {R}} \varphi _1 (\zeta ) \nu _1 (\zeta ) \left( \int _{\zeta '\in \mathbb {R}} \varphi _1 (\zeta ') g_1 (\zeta ',s;z,0) \; d\zeta ' \right) d \zeta ,\\ \mathscr {R}_{\varphi _2}(s) \mathop {=}\limits ^{\mathrm{def}}&\mathbb {E}[\varphi _2 (c(\tau ),\hbox {w}_T(\tau ))\varphi _2 (c({\tau +s}),\hbox {w}_T({\tau +s}))] \int _{\mathbb {R}^2} \varphi _2 (\zeta ) \nu _2 (\zeta ) \left( \int _{\zeta '\in \mathbb {R}^2} \varphi _2 (\zeta ') g_2 (\zeta ',s;z,0) \; d\zeta ' \right) d \zeta . \end{aligned}$$

Their time integrals are the power spectral densities:

$$\begin{aligned} \begin{aligned} \mathbb {S}_{u_T} (0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty \mathscr {R}_{\varphi _1}(s) ds, \\ \mathbb {S}_{\mathrm{w}_T} (0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty \mathscr {R}_{\varphi _2}(s) ds,\\ \mathbb {S}_{u_T}^{\cos } (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty \mathscr {R}_{\varphi _1}(s) C^0 (\omega _0 s) ds,\\ \mathbb {S}_{u_T}^{\sin } (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty \mathscr {R}_{\varphi _1}(s) S^0 (\omega _0 s) ds,\\ \mathbb {S}_{\mathrm{w}_T}^{\cos } (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty \mathscr {R}_{\varphi _2}(s) C^0 (\omega _0 s) ds,\\ \mathbb {S}_{\mathrm{w}_T}^{\sin } (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty \mathscr {R}_{\varphi _2}(s) S^0 (\omega _0 s) ds, \end{aligned} \end{aligned}$$

which can be readily found from the Dryden Model. We also define the (lj)th element:

$$\begin{aligned} {\mathcal {S}}^{\cos ,l}_{u_T,j} (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}\int _0^\infty \mathscr {R}_{\varphi _1}(s) C^0 (\omega _0 s) \frac{\partial {\psi _s^{l}(y)}}{\partial y_j}|_{y=0} \ ds, \\ {\mathcal {S}}^{\sin ,l}_{u_T,j} (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}\int _0^\infty \mathscr {R}_{\varphi _1}(s) S^0 (\omega _0 s) \frac{\partial {\psi _s^{l}(y)}}{\partial y_j}|_{y=0} \ ds. \end{aligned}$$

We define the various damped spectra as follows:

$$\begin{aligned} \mathbb {S}_{u_T}^{\cos , \lambda _i} (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty e^{\lambda _i s} \mathscr {R}_{\varphi _1}(s) C^0 (\omega _0 s) ds, \\ \mathbb {S}_{u_T}^{\sin , \lambda _i} (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty e^{\lambda _i s} \mathscr {R}_{\varphi _1}(s) S^0 (\omega _0 s) ds \end{aligned}$$

for \(i= 1,\ldots ,4\), and

$$\begin{aligned} \mathbb {S}_{u_T}^{\cos , \kappa } (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty e^{-\kappa s} \mathscr {R}_{\varphi _1}(s) C^0 (\omega _0 s) ds, \\ \mathbb {S}_{u_T}^{\sin , \kappa } (\omega _0)&\mathop {=}\limits ^{\mathrm{def}}2 \int _0^\infty e^{-\kappa s} \mathscr {R}_{\varphi _1}(s) S^0 (\omega _0 s) ds. \end{aligned}$$

Thus,

$$\begin{aligned} {\mathcal {S}}^{\cos ,l}_{u_T,j} (\omega _0)&= \begin{bmatrix} \frac{1}{8} [\mathbb {S}_{u_T}^{\cos , \kappa } (\omega _0-\gamma ) + \mathbb {S}_{u_T}^{\cos , \kappa } (\omega _0+\gamma ) ]&\frac{1}{8} [\mathbb {S}_{u_T}^{\sin , \kappa } (\omega _0-\gamma )-\mathbb {S}_{u_T}^{\sin , \kappa } (\omega _0+\gamma )]&0&0&0&0 \\ \frac{1}{8} [\mathbb {S}_{u_T}^{\sin , \kappa } (\omega _0+\gamma )-\mathbb {S}_{u_T}^{\sin , \kappa } (\omega _0-\gamma )]&\frac{1}{8} [\mathbb {S}_{u_T}^{\cos , \kappa } (\omega _0-\gamma ) + \mathbb {S}_{u_T}^{\cos , \kappa } (\omega _0+\gamma )]&0&0&0&0 \\ 0&0&\frac{1}{4}\mathbb {S}_{u_T}^{\cos , \lambda _1} (\omega _0)&0&0&0 \\ 0&0&0&\frac{1}{4}\mathbb {S}_{u_T}^{\cos , \lambda _2} (\omega _0)&0&0 \\ 0&0&0&0&\frac{1}{4}\mathbb {S}_{u_T}^{\cos , \lambda _3} (\omega _0)&0 \\ 0&0&0&0&0&\frac{1}{4}\mathbb {S}_{u_T}^{\cos , \lambda _4} (\omega _0) \end{bmatrix} , \\ {\mathcal {S}}^{\sin ,l}_{u_T,j} (\omega _0)&= \begin{bmatrix} \frac{1}{8} [\mathbb {S}_{u_T}^{\sin , \kappa } (\omega _0-\gamma ) + \mathbb {S}_{u_T}^{\sin , \kappa } (\omega _0+\gamma ) ]&\frac{1}{8} [\mathbb {S}_{u_T}^{\cos , \kappa } (\omega _0+\gamma )-\mathbb {S}_{u_T}^{\cos , \kappa } (\omega _0-\gamma )]&0&0&0&0 \\ \frac{1}{8} [\mathbb {S}_{u_T}^{\cos , \kappa } (\omega _0-\gamma )-\mathbb {S}_{u_T}^{\cos , \kappa } (\omega _0+\gamma ) ]&\frac{1}{8} [\mathbb {S}_{u_T}^{\sin , \kappa } (\omega _0-\gamma ) + \mathbb {S}_{u_T}^{\sin , \kappa } (\omega _0+\gamma )]&0&0&0&0 \\ 0&0&\frac{1}{4} \mathbb {S}_{u_T}^{\sin , \lambda _1} (\omega _0)&0&0&0 \\ 0&0&0&\frac{1}{4} \mathbb {S}_{u_T}^{\sin , \lambda _2} (\omega _0)&0&0 \\ 0&0&0&0&\frac{1}{4} \mathbb {S}_{u_T}^{\sin , \lambda _3} (\omega _0)&0 \\ 0&0&0&0&0&\frac{1}{4} \mathbb {S}_{u_T}^{\sin , \lambda _4} (\omega _0) \end{bmatrix}. \end{aligned}$$

Now, the partial differential equation (7.5) is written in terms of these power spectral densities. The homogenized generator \(\mathscr {L}^{\dagger \dagger }\) will be an operator that depends only on the two dimensional slow variables \(x_{\tau }\), hence the test functions associated with \(\mathscr {L}^{\dagger \dagger }\) will be of the form \(f(x_{\tau })\). Therefore, let f be a smooth function of x only, and the generator that produces the slow process is given by

$$\begin{aligned} \mathscr {L}^{\dagger \dagger } \mathop {=}\limits ^{\mathrm{def}}\sum _{i=1}^2 {\bar{b}}_i(x) \frac{\partial }{\partial x_i} + \frac{1}{2} \sum _{i,j=1}^2 {\hat{a}}_{ij}(x) \frac{\partial ^2 }{\partial x_i \partial x_j } \end{aligned}$$
(7.6)

with the homogenized coefficients given by

$$\begin{aligned} {\bar{b}}_i(x)= x_k\left( \beta \pi ^{\beta }_{ik} + (x_1^2 +x_2^2 ) \pi ^{\bar{g}}_{ik}\right. + \frac{1}{8}\left[ \pi ^1_{ik} \mathbb {S}_{u_T}^{\cos } (2 \omega _0) +\pi ^2_{ik} \mathbb {S}_{u_T}^{\sin } (2 \omega _0) + \pi ^3_{ik} \mathbb {S}_{u_T} (0) \right] +\frac{1}{8}\left[ \pi ^4_{ik} \mathbb {S}_{u_T}^{\cos ,\kappa } (\omega _0+\gamma ) + \pi ^5_{ik} \mathbb {S}_{u_T}^{\cos ,\kappa } (\omega _0-\gamma ) \right. \left. + \pi ^6_{ik} \mathbb {S}_{u_T}^{\sin ,\kappa } (\omega _0+\gamma ) + \pi ^7_{ik} \mathbb {S}_{u_T}^{\sin ,\kappa } (\omega _0-\gamma )\right] \left. + \frac{1}{4}\left[ \sum _{r=1}^4 \pi _{ik}^{\sin , \lambda _r} \mathbb {S}_{u_T}^{\sin ,\lambda _r} (\omega _0) + \sum _{r=1}^4 \pi _{ik}^{\cos , \lambda _r} \mathbb {S}_{u_T}^{\cos ,\lambda _r} (\omega _0)\right] \right) \end{aligned}$$

and

$$\begin{aligned} {\hat{a}}_{ij} (x)= & {} \frac{x_1^2 +x_2^2 }{8} \left[ \pi ^1_{ij} \mathbb {S}_{u_T}^{\cos } (2 \omega _0) + \pi ^2_{ij} \mathbb {S}_{u_T}^{\sin } (2 \omega _0) \right] \\&+ \frac{\wp }{2} \left[ \pi ^{8}_{ij} \mathbb {S}^{\cos }_{\mathrm{w}_T} (\omega _0) + \pi ^{9}_{ij} \mathbb {S}^{\sin }_{\mathrm{w}_T} (\omega _0) \right] \\&+ \frac{\mathbb {S}_{u_T} (0) }{4} \left( \pi ^{10}_{ij} x_1^2 + \pi ^{11}_{ij} x_2^2 + \pi ^{12}_{ij} x_1 x_2 \right) , \end{aligned}$$

where the definitions of the various \(2 \times 2\) matrices \(\pi ^{r}\) are given in “Appendix 3”.

Appendix 3

$$\begin{aligned} &\pi ^\beta= \begin{bmatrix} \delta '&\gamma ' \\ -\gamma '&\delta ' \end{bmatrix}, \ \pi ^{\bar{g}} = \begin{bmatrix} -\bar{R}&-\tilde{R} \\ \tilde{R}&-\bar{R} \end{bmatrix}, \\ &\pi ^1= \begin{bmatrix} \kappa _2&0 \\ 0&\kappa _2 \end{bmatrix},\ \pi ^2 = \begin{bmatrix} 0&\kappa _2 \\ -\kappa _2&0 \end{bmatrix}, \\ &\pi ^3= \begin{bmatrix} \kappa _1 - \kappa _{7}&2\sqrt{\kappa _1 \kappa _{7}} \\ -2\sqrt{\kappa _1 \kappa _{7}}&\kappa _1 - \kappa _{7} \end{bmatrix}, \ \pi ^4 = \begin{bmatrix} \kappa _3&\kappa _5 \\ -\kappa _5&\kappa _3 \end{bmatrix}, \\ &\pi ^5= \begin{bmatrix} \kappa _4&\kappa _6 \\ -\kappa _6&\kappa _4 \end{bmatrix}, \ \pi ^6 = \begin{bmatrix} -\kappa _5&\kappa _3 \\ -\kappa _3&-\kappa _5 \end{bmatrix}, \\ &\pi ^7= \begin{bmatrix} -\kappa _6&\kappa _4 \\ -\kappa _4&-\kappa _6 \end{bmatrix}, \ \pi ^{\sin , \lambda _r} = \begin{bmatrix} \kappa ^{\sin , \lambda _r}&\kappa ^{\cos , \lambda _r} \\ -\kappa ^{\cos , \lambda _r}&\kappa ^{\sin , \lambda _r} \end{bmatrix}, \\ &\pi ^{\cos , \lambda _r}= \begin{bmatrix} \kappa ^{\cos , \lambda _r}&-\kappa ^{\sin , \lambda _r} \\ \kappa ^{\sin , \lambda _r}&\kappa ^{\cos , \lambda _r} \end{bmatrix}, \ \pi ^{8} = \begin{bmatrix} \kappa _{8}&0 \\ 0&\kappa _{8} \end{bmatrix}, \\ &\pi ^{9}= \begin{bmatrix} 0&\kappa _{8} \\ -\kappa _{8}&0 \end{bmatrix}, \ \pi ^{10} = \begin{bmatrix} \kappa _1&-\sqrt{\kappa _1\kappa _{7}} \\ -\sqrt{\kappa _1\kappa _{7}}&\kappa _7 \end{bmatrix}, \\ &\pi ^{11}= \begin{bmatrix} \kappa _7&\sqrt{\kappa _1\kappa _{7}} \\ \sqrt{\kappa _1\kappa _{7}}&\kappa _1 \end{bmatrix}, \ \pi ^{12} = \begin{bmatrix} 2\sqrt{\kappa _1\kappa _{7}}&\kappa _1-\kappa _7 \\ \kappa _1-\kappa _7&- 2\sqrt{\kappa _1\kappa _{7}} \end{bmatrix},\\ &\delta' = \frac{d_{11}+d_{22}}{2},\ \gamma ' = \frac{d_{12}-d_{21}}{2},\ d_{ij} \in D,\\ &\kappa _1= ( k_{11} + k_{22})^2, \ \kappa _2 = \left\{ (k_{11} - k_{22})^2 + ( k_{12} + k_{21})^2 \right\} , \\ & \kappa _3= (m_{22}-m_{11})(n_{22}-n_{11}) + (m_{12}+m_{21})(n_{12}+n_{21}), \\ & \kappa _4= (m_{22}+m_{11})(n_{22}+n_{11}) - (m_{12}-m_{21})(n_{12}-n_{21}), \\ & \kappa _5= (m_{12}+m_{21})(n_{22}-n_{11}) - (m_{22}-m_{11})(n_{12}+n_{21}), \\ & \kappa _6= (m_{22}+m_{11})(n_{12}-n_{21}) + (m_{12}-m_{21})(n_{22}+n_{11}), \end{aligned}$$

where \(m_{ij} \in \bar{M}\) and \(n_{ij} \in \bar{N}\),

$$\begin{aligned} \kappa ^{\sin , \lambda _r}= & {} \left\{ -m_{1(r+2)}n_{(r+2)2} + m_{2(r+2)}n_{(r+2)1} \right\} , \\ \kappa ^{\cos , \lambda _r}= & {} \left\{ m_{1(r+2)}n_{(r+2)1} + m_{2(r+2)}n_{(r+2)2} \right\} , \end{aligned}$$

for \(r = 1,\ldots ,4\),

$$\begin{aligned} \kappa _{7}= & {} (k_{12} - k_{21} )^2,\ k_{ij} \in \bar{K}, \\ \kappa _{8}= & {} \left\{ f_1^2 + f_2^2 \right\} , \end{aligned}$$

and

$$\begin{aligned} \bar{R}= & {} - \frac{3}{8} \left\{ {\hat{g}}_{1:111} +{\hat{g}}_{1:122} + {\hat{g}}_{2:112} + {\hat{g}}_{2:222} \right\} , \\ \tilde{R}= & {} - \frac{3}{8} \left\{ {\hat{g}}_{1:112} +{\hat{g}}_{1:222} - {\hat{g}}_{2:111} - {\hat{g}}_{2:122} \right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Yeong, H.C., Zhang, H. et al. Stochastic stability and dynamics of a two-dimensional structurally nonlinear airfoil in turbulent flow. Meccanica 51, 2665–2688 (2016). https://doi.org/10.1007/s11012-016-0445-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0445-8

Keywords

Navigation