Skip to main content
Log in

Flutter analysis of a nonlinear airfoil using stochastic approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamic instability of a nonlinear system has been studied using the stochastic vibration analysis and employing statistical properties of the system response. In this method neither the time domain analysis nor limit cycle oscillations were used. A two degrees-of-freedom airfoil subjected to an aerodynamic quasi-steady flow with a nonlinear torsional spring was considered as the case study. The spring nonlinearity was examined in hardening and softening states. A random force in the form of the white noise with Gaussian function was added to the aerodynamic lift force. The statistical linearization and random vibration analysis were applied to the nonlinear system to obtain the equation of one-dimensional nonlinear map in terms of response variance and flow speed. Furthermore, the nonlinear map was solved to analyze the response variance of the system against the flow speed. The flow velocity of the maximum variance of the system response was regarded as the flutter speed. The bifurcation point and the approaching path to the chaos were determined by investigating the nonlinear map through the iteration process. In addition, a good vision of jump phenomenon in velocity-variance diagram was given through the current stochastic analysis using the chaos intermittency cascade and the tangent bifurcation point. The aforementioned result is new in the nonlinear aeroelastic dynamic instability field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee, B.H.K., LeBlanc, P.: Flutter analysis of a two-dimensional airfoil with cubic non-linear restoring force. National Aeronautical Establishment, National Research Council Canada (1986)

  2. Lee, B.H.K., Jiang, L.Y., Wong, Y.S.: Flutter of an airfoil with a cubic nonlinear restoring force. In: 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Structures, Structural Dynamics, and Materials and Co-located Conferences. American Institute of Aeronautics and Astronautics (1998)

  3. Shen, S.F.: An approximate analysis of nonlinear flutter problems. J. Aerosp. Sci. 26(1), 25–32 (1959). doi:10.2514/8.7914

    Article  MATH  Google Scholar 

  4. Lee, B.H.K., Gong, L., Wong, Y.S.: Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity. J. Fluids Struct. 11(3), 225–246 (1997). doi:10.1006/jfls.1996.0075

    Article  Google Scholar 

  5. Liu, J.K., Zhao, L.C.: Bifurcation analysis of airfoils in incompressible flow. J. Sound Vib. 154(1), 117–124 (1992). doi:10.1016/0022-460X(92)90407-O

    Article  MATH  Google Scholar 

  6. Price, S.J., Alighanbari, H., Lee, B.H.K.: The aeroelastic response of a two-dimensional airfoil with bilinear and cubic structural nonlinearities. J. Fluids Struct. 9(2), 175–193 (1995). doi:10.1006/jfls.1995.1009

    Article  Google Scholar 

  7. Shahrzad, P., Mahzoon, M.: Limit cycle flutter of airfoils in steady and unsteady flows. J. Sound Vib. 256(2), 213–225 (2002). doi:10.1006/jsvi.2001.4113

    Article  Google Scholar 

  8. Lee, B.H.K., Liu, L., Chung, K.W.: Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces. J. Sound Vib. 281(3–5), 699–717 (2005). doi:10.1016/j.jsv.2004.01.034

    Article  Google Scholar 

  9. Liu, L., Dowell, E.: The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics. Nonlinear Dyn. 37(1), 31–49 (2004). doi:10.1023/B:NODY.0000040033.85421.4d

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, L., Dowell, E.H., Thomas, J.P.: A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces. J. Fluids Struct. 23(3), 351–363 (2007). doi:10.1016/j.jfluidstructs.2006.09.005

    Article  Google Scholar 

  11. Raghothama, A., Narayanan, S.: Non-Linear dynamics of a two-dimensional airfoil by incremental harmonic balance method. J. Sound Vib. 226(3), 493–517 (1999). doi:10.1006/jsvi.1999.2260

    Article  Google Scholar 

  12. Chen, Y.M., Liu, J.K.: Elliptic harmonic balance method for two degree-of-freedom self-excited oscillators. Commun. Nonlinear Sci. Numer. Simul. 14(3), 916–922 (2009). doi:10.1016/j.cnsns.2007.11.008

    Article  Google Scholar 

  13. Beran, P.S., Lucia, D.J.: A reduced order cyclic method for computation of limit cycles. Nonlinear Dyn. 39(1–2), 143–158 (2005). doi:10.1007/s11071-005-1921-1

    Article  MATH  Google Scholar 

  14. Liu, L., Wong, Y.S., Lee, B.H.K.: Application of the centre manifold theory in non-linear aeroelasticity. J. Sound Vib. 234(4), 641–659 (2000). doi:10.1006/jsvi.1999.2895

    Article  MathSciNet  MATH  Google Scholar 

  15. Abdelkefi, A., Vasconcellos, R., Marques, F., Hajj, M.: Bifurcation analysis of an aeroelastic system with concentrated nonlinearities. Nonlinear Dyn. 69(1–2), 57–70 (2012). doi:10.1007/s11071-011-0245-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung, K.W., He, Y.B., Lee, B.H.K.: Bifurcation analysis of a two-degree-of-freedom aeroelastic system with hysteresis structural nonlinearity by a perturbation-incremental method. J. Sound Vib. 320(1–2), 163–183 (2009). doi:10.1016/j.jsv.2008.07.019

    Article  Google Scholar 

  17. Liu, L., Wong, Y.S., Lee, B.H.K.: Non-Linear aeroelastic analysis using the point transformation method, part 1: Freeplay model. J. Sound Vib. 253(2), 447–469 (2002). doi:10.1006/jsvi.2001.4064

    Article  Google Scholar 

  18. Liao, S.J.: An analytic approximate approach for free oscillations of self-excited systems. Int. J. Non-Linear Mech. 39(2), 271–280 (2004). doi:10.1016/S0020-7462(02)00174-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Y.M., Liu, J.K.: Homotopy analysis method for limit cycle flutter of airfoils. Appl. Math. Comput. 203(2), 854–863 (2008). doi:10.1016/j.amc.2008.05.095

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273–286 (1990). doi:10.1016/0022-460X(90)90528-8

    Article  MathSciNet  Google Scholar 

  21. Chen, Y.M., Liu, J.K., Meng, G.: Equivalent damping of aeroelastic system of an airfoil with cubic stiffness. J. Fluids Struct. 27(8), 1447–1454 (2011). doi:10.1016/j.jfluidstructs.2011.02.004

    Article  MathSciNet  Google Scholar 

  22. Chen, Y.M., Liu, J.K., Meng, G.: An incremental method for limit cycle oscillations of an airfoil with an external store. Int. J. Non-Linear Mech. 47(3), 75–83 (2012). doi:10.1016/j.ijnonlinmec.2011.12.006

  23. Irani, S., Sazesh, S.: A new flutter speed analysis method using stochastic approach. J. Fluids Struct. 40, 105–114 (2013). doi:10.1016/j.jfluidstructs.2013.03.018

    Article  Google Scholar 

  24. Hodges, D.H., Pierce, G.A.: Introduction to Structural Dynamics and Aeroelasticity. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  25. Abdelkefi, A., Vasconcellos, R., Nayfeh, A., Hajj, M.: An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn. 71(1–2), 159–173 (2013). doi:10.1007/s11071-012-0648-z

    Article  MathSciNet  MATH  Google Scholar 

  26. Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. NACA TR 496 (1935)

  27. Peters, D.A.: Two-dimensional incompressible unsteady airfoil theory—an overview. J. Fluids Struct. 24(3), 295–312 (2008). doi:10.1016/j.jfluidstructs.2007.09.001

    Article  Google Scholar 

  28. Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. Wiley, Chichester (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Sazesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irani, S., Sazesh, S. & Molazadeh, V.R. Flutter analysis of a nonlinear airfoil using stochastic approach. Nonlinear Dyn 84, 1735–1746 (2016). https://doi.org/10.1007/s11071-016-2601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2601-z

Keywords

Navigation