Skip to main content
Log in

A numerical investigation of wake and mixing layer interactions of flow past a square cylinder

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The aim of the present study is to simulate and analyze the interaction of two dimensional flow past a square cylinder in a laminar regime with an upstream mixing layer developed by an axis symmetrical horizontal splitter plate. The mixing layer is generated upstream of the square cylinder by mixing two uniform streams of fluid with different velocities above and below the splitter plate. A range of upstream domain lengths, distances between the splitter plate and the square cylinder, and upstream velocity ratios between the two streams of fluid are analyzed. Unconfined flow over a square cylinder placed in uniform upstream flow is initially analyzed as it plays a crucial role in understanding the properties of the wake. The results are compared with the existing literature to validate the code developed and they are found to be in very good agreement. It is observed from the present study that at smaller velocity ratios, the vortices shed into the wake consist of both clockwise and anticlockwise moment vortices. As velocity ratio is increased only clockwise moment vortices are shed downstream and anticlockwise vortices are shed as Kelvin–Helmholtz instabilities. In all simulations undertaken the same phenomena is observed independent of the upstream Reynolds number, indicating that velocity ratio is a primary parameter influencing the flow. Different instability modes were observed and they were highly dependent on the upstream velocity ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a:

Side of the square cylinder

A:

Dimensional side of the square cylinder (m)

CD :

Drag coefficient

CL :

Lift coefficient

f:

Dimensional frequency (Hz)

FD :

Dimensional drag force (N)

Ff :

Flux through face f of the control volume

FL :

Dimensional lift force (N)

H:

Height of the domain

L:

Length of the domain

\({\hat{\text{n}}}\) :

Outward normal of the surface S

p:

Non dimensional pressure

r:

Ratio of Reynolds number above and below the splitter plate

Re:

Reynolds number

S:

Surface onto the control volume

St:

Strouhal number

spl:

Length of the flat plate

t:

Non-dimensional time

ul:

Upstream length of the physical domain

dl:

Downstream length of the physical domain

dt:

Non dimensional time step

u:

Non-dimensional velocity in X direction below the splitter plate

U:

Free stream velocity in X direction at the inlet below the splitter plate (m/s)

v:

Non-dimensional velocity in Y direction

\(\forall\) :

Control volume

x:

Non-dimensional Eulerian coordinates in horizontal direction

y:

Non-dimensional Eulerian coordinates in vertical direction

ρ:

Fluid density (kg/m3)

μ:

Fluid viscosity [kg/(m s)]

References

  1. Ayukawa K, Ochi J, Kawahara G, Hirao T (1993) Effects of shear rate on the flow around a square cylinder in uniform a shear flow. J Wind Eng Ind Aerodyn 50:97–106

    Article  Google Scholar 

  2. Bhattacharyya S, Maiti DK (2004) Shear flow past a square cylinder near a wall. Int J Eng Sci 42:2119–2134

    Article  Google Scholar 

  3. Bhattacharyya S, Maiti DK (2006) Vortex shedding suppression for laminar flow past a square cylinder near a plane wall: a two-dimensional analysis. Acta Mech 184:15–31

    Article  MATH  Google Scholar 

  4. Cheng M, Tan SHN, Hung C (2005) Linear shear flow over a square cylinder at low Reynolds number. Phys Fluids 17:078103-1/4

    ADS  MATH  Google Scholar 

  5. Cheng M, Whyte DS, Lou J (2007) Numerical simulation of flow around a square cylinder in uniform-shear flow. J Fluids Struct 23:207–226

    Article  Google Scholar 

  6. Davis RW, Moore EF (1982) A numerical Study of vortex shedding from rectangles. J Fluid Mech 116:475–506

    Article  ADS  MATH  Google Scholar 

  7. Davis RW, Moore EF, Purtell LP (1984) A numerical-experimental study of confined flow around rectangular cylinders. Phys Fluids 27:46–59

    Article  ADS  Google Scholar 

  8. Doolan CJ (2009) Flat-plate interaction with the near wake of a square cylinder. AIAA J 47(2):475–478

    Article  ADS  Google Scholar 

  9. Franke R, Rodi W, Schonung B (1990) Numerical calculation of laminar vortex shedding flow past cylinders. J Wind Energy Ind Aerodyn 35:237–257

    Article  Google Scholar 

  10. Franke R (1991) Numerische Berechnung der instationären Wirbelablösung hinter zylindrischen Körpern. Ph.D. Thesis, University of Karlsruhe

  11. Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Hwang RR, Sue YC (1997) Numerical simulation of shear effect on vortex shedding behind a square cylinder. Int J Numer Methods Fluids 25(12):1409–1420

    Article  MATH  Google Scholar 

  13. Jordan SK, Fromm JE (1972) Laminar flow past a circle in a shear-flow. Phys Fluids 15(6):972

    Article  ADS  Google Scholar 

  14. Kelkar KM, Patankar SV (1992) Numerical prediction of vortex shedding behind a square cylinder. Int J Numer Meth Fluids 14:327–341

    Article  MATH  Google Scholar 

  15. Kiya M, Tamura H, Arie M (1980) Vortex shedding from a circular cylinder in moderate-Reynolds number shear flow. J Fluid Mech 141(4):721–735

    Article  ADS  Google Scholar 

  16. Kwon TS, Sung HJ, Hyun JM (1992) Experimental investigation of uniform-shear flow past a circular cylinder. J Fluids Eng 114:457

    Article  Google Scholar 

  17. Lankadasu A, Vengadesan S (2008) Onset of vortex shedding in planar shear flow past a square cylinder. Int J Heat Fluid Flow 29:1054–1059

    Article  MATH  Google Scholar 

  18. Lesage F, Gartshore IS (1987) A method of reducing drag and fluctuating side force on bluff bodies. J Wind Eng Ind Aerodyn 25:229–245

    Article  Google Scholar 

  19. Luo SC, Chew YT, Ng YT (2003) Characteristics of square cylinder wake transition flows. Phys Fluids 15:2549

    Article  ADS  MATH  Google Scholar 

  20. Luo SC, Tong XH, Khoo BC (2007) Transition phenomena in the wake of a square cylinder. J Fluids Struct 23:227–248

    Article  Google Scholar 

  21. Malekzadeh S, Sohankar A (2012) Reduction of fluid forces and heat transfer on a square cylinder in a laminar flow regime using a control plate. Int J Heat Fluid Flow 34:15–27

    Article  Google Scholar 

  22. Mukhopadhyay A, Biswa G, Sundararajan T (1992) Numerical investigation of confined wakes behind a square cylinder in a channel. Int J Numer Meth Fluids 14:1473–1484

    Article  MATH  Google Scholar 

  23. Mukhopadhyay A, Venugopal P, Vanka SP (1999) Numerical study of vortex shedding from a circular cylinder in linear shear flow. J Fluids Eng 121(2):462–468

    Article  Google Scholar 

  24. Okajima A (1982) Strouhal numbers of rectangular cylinders. J Fluid Mech 123:379–398

    Article  ADS  Google Scholar 

  25. Okajima A (1990) Numerical simulation of flow around rectangular cylinders. J Wind Eng Ind Aerodyn 33:171–180

    Article  Google Scholar 

  26. Okajima A, Ueno H, Sakai H (1992) Numerical simulation of laminar and turbulent flows around rectangular cylinders. Int J Numer Methods Fluids 15:999–1012

    Article  MATH  Google Scholar 

  27. Roberts GO (1971) Computational meshes for boundary layer problems. In: Proceedings of the second international conference on numerical methods and fluid dynamics. Lecture notes in physics, vol 8. Springer, New York, pp 171–177

  28. Saha AK, Biswas G, Muralidhar K (2001) Two dimensional study of the turbulent wake behind a square cylinder subject to uniform shear. ASME J Fluids Eng 123(3):595–603

    Article  Google Scholar 

  29. Sakamoto H, Tan K, Haniu H (1991) An optimum suppression of fluid forces by controlling a shear layer separated from a square prism. ASME J Fluids Eng 113(2):183–189

    Article  Google Scholar 

  30. Sakamoto H, Tan K, Takeuchi N, Haniu H (1997) Suppression of fluid forces acting on a square prism by passive control. ASME J Fluids Eng 119:506–511

    Article  Google Scholar 

  31. Salinas-Vazquez M, Vicente W, Barrera E, Martinez E (2014) Numerical analysis of the drag force of the flow in a square cylinder with a flat plate in front. Rev Mex Fís 60:102–108

    MathSciNet  Google Scholar 

  32. Sau A (2009) Hopf bifurcations in the wake of a square cylinder. Phys Fluids 21:034105

    Article  ADS  MATH  Google Scholar 

  33. Scarano F, Poel MC (2009) Three-dimensional vorticity pattern of cylinder wakes. Exp Fluids 47:69–83

    Article  Google Scholar 

  34. Sohankar A, Davidson L, Norberg C (1995) Numerical simulation of unsteady flow around a square two dimensional cylinder. In: 12th Australian fluid mechanics conference. University of Sydney, Australia, pp 517–520

  35. Sohankar A, Norberg C, Davidson L (1997) Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence. J Wind Eng Ind Aerodyn 69(71):189–201

    Article  Google Scholar 

  36. Sohankar A, Norberg C, Davidson L (1998) Low Reynolds number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. Int J Numer Methods Fluids 26:39–56

    Article  MATH  Google Scholar 

  37. Sohankar A, Norberg C, Davidson L (1999) Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers. Phys Fluids 11:288–306

    Article  ADS  MATH  Google Scholar 

  38. Sukri MAM, Doolan CJ, Wheatley V (2011) Low Reynolds number flow over a square cylinder with a splitter plate. Phys Fluids 23:033602

    Article  ADS  Google Scholar 

  39. Sukri MAM, Doolan CJ, Wheatley V (2012) Low Reynolds number flow over a square cylinder with a detached flat plate. Int J Heat Fluid Flow 36:133–141

    Article  Google Scholar 

  40. Sumner D, Akosile OO (2003) On uniform planar shear flow around a circular cylinder at subcritical Reynolds number. J Fluids Struct 18:441–454

    Article  Google Scholar 

  41. Suzuki H, Inoue Y, Nishimura T, Fukutani K, Suzuki K (1993) Unsteady flow in a channel obstructed by a square rod (crisscross motion of vortex). Int J Heat Fluid Flow 14(1):2–9

    Article  Google Scholar 

  42. Williamson CHK (1996) Vortex dynamics in the cylinder wake. Annu Rev Fluid Mech 28:477–539

    Article  ADS  MathSciNet  Google Scholar 

  43. Xu Y, Dalton C (2001) Computational force on a cylinder in a shear flow. J Fluids Struct 15:941–954

    Article  Google Scholar 

  44. Yoshida T, Watanabe T, Nakamura I (1993) Numerical analysis of open boundary conditions for incompressible viscous flow past a square cylinder. Trans JSME 59:2799–2806

    Article  Google Scholar 

  45. Zhou L, Cheng M, Hung KC (2005) Suppression of fluid force on a square cylinder by flow control. J Fluids Struct 21:151–167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Bergada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mushyam, A., Bergada, J.M. A numerical investigation of wake and mixing layer interactions of flow past a square cylinder. Meccanica 52, 107–123 (2017). https://doi.org/10.1007/s11012-016-0400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0400-8

Keywords

Navigation