Skip to main content
Log in

Postbuckling behavior of functionally graded nanobeams subjected to thermal loading based on the surface elasticity theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present investigation, an analytical solution is proposed to predict the postbuckling characteristics of nanobeams made of functionally graded materials which are subjected to thermal environment and surface stress effect. To this end, a non-classical beam model on the basis of Gurtin–Murdoch elasticity theory in the framework of Euler–Bernoulli beam theory and concept of physical neutral surface is utilized which has the capability to consider the effect of surface stress and von Karman-type of kinematic nonlinearity. The size-dependent nonlinear governing equations are solved analytically for different end supports. The postbuckling equilibrium paths corresponding to various boundary conditions are given in the presence of surface stress corresponding to various beam thicknesses, material gradient indexes, temperature changes and buckling mode numbers. It is found that by increasing the values of temperature change, the equilibrium path is shifted to right and the normalized applied axial load decreases indicating that the effect of surface stress diminishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mortensen A, Suresh S (1998) Fundamentals of functionally graded materials: processing and thermomechanical behaviour of graded metals and metal-ceramic composites. IOM Communications Ltd, London, pp 1–70

    Google Scholar 

  2. Miyamoto Y, Kaysser W, Rabin B, Kawasaki A, Ford R (2013) Functionally graded materials: design, processing and applications. Springer, Berlin

    Google Scholar 

  3. Rastgo A, Shafie H, Allahverdizadeh A (2005) Instability of curved beams made of functionally graded material under thermal loading. Int J Mech Mater Des 2(1–2):117–128

    Article  Google Scholar 

  4. Li S-R, Zhang J-H, Zhao Y-G (2006) Thermal post-buckling of functionally graded material Timoshenko beams. Appl Math Mech 27:803–810

    Article  MATH  Google Scholar 

  5. Xiang H, Yang J (2008) Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos B Eng 39(2):292–303

    Article  MathSciNet  Google Scholar 

  6. Stölken J, Evans A (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115

    Article  Google Scholar 

  7. Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112(2):395–408

    Article  Google Scholar 

  8. Witvrouw A, Mehta A (2005) The use of functionally graded poly-SiGe layers for MEMS applications. Mater Sci Forum 492:255–260

    Article  Google Scholar 

  9. Lü C, Lim CW, Chen W (2009) Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int J Solids Struct 46(5):1176–1185

    Article  MATH  Google Scholar 

  10. Eltaher M, Emam SA, Mahmoud F (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218(14):7406–7420

    MathSciNet  MATH  Google Scholar 

  11. Streitz F, Cammarata R, Sieradzki K (1994) Surface-stress effects on elastic properties. I. Thin metal films. Phys Rev B 49(15):10699

    Article  ADS  Google Scholar 

  12. Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69(16):165410

    Article  ADS  Google Scholar 

  14. Sander D (2003) Surface stress: implications and measurements. Curr Opin Solid State Mater Sci 7(1):51–57

    Article  ADS  Google Scholar 

  15. Huang Z, Wang J (2006) A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech 182(3–4):195–210

    Article  MATH  Google Scholar 

  16. Wang Z-Q, Zhao Y-P, Huang Z-P (2010) The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci 48(2):140–150

    Article  MathSciNet  Google Scholar 

  17. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14(6):431–440

    Article  MATH  Google Scholar 

  18. Wang Z, Zhao Y (2009) Self-instability and bending behaviors of nano plates. Acta Mech Solida Sin 22(6):630–643

    Article  Google Scholar 

  19. Mindlin R, Tiersten H (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  MATH  Google Scholar 

  20. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414

    Article  MathSciNet  MATH  Google Scholar 

  21. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  22. Aifantis E (1999) Strain gradient interpretation of size effects. Int J Fract 95(1–4):299–314

    Article  Google Scholar 

  23. Kong S, Zhou S, Nie Z, Wang K (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47(4):487–498

    Article  MathSciNet  MATH  Google Scholar 

  24. Lazopoulos K (2009) On bending of strain gradient elastic micro-plates. Mech Res Commun 36(7):777–783

    Article  MathSciNet  MATH  Google Scholar 

  25. Tylikowski A (2011) Stochastic instability via nonlocal continuum mechanics. Probab Eng Mech 26(1):76–80

    Article  Google Scholar 

  26. Amirian B, Hosseini-Ara R, Moosavi H (2014) Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model. Appl Math Mech 35(7):875–886

    Article  MathSciNet  Google Scholar 

  27. Li C, Lim CW, Yu J, Zeng Q (2011) Transverse vibration of pre-tensioned nonlocal nanobeams with precise internal axial loads. Sci China Technol Sci 54(8):2007–2013

    Article  MATH  Google Scholar 

  28. Narendar S, Gopalakrishnan S (2012) Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech 223(2):395–413

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang Y-Z, Cui H-T, Li F-M, Kishimoto K (2013) Thermal buckling of a nanoplate with small-scale effects. Acta Mech 224(6):1299–1307

    Article  MathSciNet  MATH  Google Scholar 

  30. Nazemnezhad R, Hosseini-Hashemi S (2015) Nonlinear free vibration analysis of Timoshenko nanobeams with surface energy. Meccanica 50(4):1027–1044

    Article  MathSciNet  MATH  Google Scholar 

  31. Gholami R, Darvizeh A, Ansari R, Hosseinzadeh M (2014) Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory. Meccanica 49(7):1679–1695

    Article  MathSciNet  MATH  Google Scholar 

  32. Eltaher M, Emam SA, Mahmoud F (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88

    Article  Google Scholar 

  33. Eltaher M, Mahmoud F, Assie A, Meletis E (2013) Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl Math Comput 224:760–774

    MathSciNet  MATH  Google Scholar 

  34. Ebrahimi F, Salari E, Hosseini SAH (2015) In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams. Meccanica. doi:10.1007/s11012-015-0248-3

  35. Karličić D, Cajić M, Murmu T, Kozić P, Adhikari S (2015) Nonlocal effects on the longitudinal vibration of a complex multi-nanorod system subjected to the transverse magnetic field. Meccanica 50(6):1605–1621

    Article  MathSciNet  MATH  Google Scholar 

  36. Ansari R, Gholami R, Rouhi H (2015) Size-dependent nonlinear forced vibration analysis of magneto–electro–thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Compos Struct 126:216–226

    Article  Google Scholar 

  37. Şimşek M, Yurtcu H (2013) Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos Struct 97:378–386

    Article  Google Scholar 

  38. Barretta R, Feo L, Luciano R, de Sciarra FM (2015) Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams. Compos Struct 129:80–89

    Article  Google Scholar 

  39. Ansari R, Oskouie MF, Gholami R, Sadeghi F (2016) Thermo–electro–mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory. Compos B Eng 89:316–327

    Article  Google Scholar 

  40. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    Article  MathSciNet  MATH  Google Scholar 

  41. Mogilevskaya SG, Crouch SL, Stolarski HK (2008) Multiple interacting circular nano-inhomogeneities with surface/interface effects. J Mech Phys Solids 56(6):2298–2327

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Lü C, Chen W, Lim CW (2009) Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Compos Sci Technol 69(7):1124–1130

    Article  Google Scholar 

  43. Intarit P, Senjuntichai T, Rajapakse R (2010) Dislocations and internal loading in a semi-infinite elastic medium with surface stresses. Eng Fract Mech 77(18):3592–3603

    Article  Google Scholar 

  44. Kushch VI, Mogilevskaya SG, Stolarski HK, Crouch SL (2011) Elastic interaction of spherical nanoinhomogeneities with Gurtin–Murdoch type interfaces. J Mech Phys Solids 59(9):1702–1716

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ansari R, Gholami R, Shojaei MF, Mohammadi V, Sahmani S (2013) Surface stress effect on the vibrational response of circular nanoplates with various edge supports. J Appl Mech 80(2):021021

    Article  Google Scholar 

  46. Ansari R, Sahmani S (2011) Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int J Eng Sci 49(11):1244–1255

    Article  MathSciNet  Google Scholar 

  47. Ansari R, Mohammadi V, Shojaei MF, Gholami R, Sahmani S (2013) Postbuckling characteristics of nanobeams based on the surface elasticity theory. Compos B Eng 55:240–246

    Article  Google Scholar 

  48. Hosseini-Hashemi S, Nazemnezhad R (2013) An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos B Eng 52:199–206

    Article  Google Scholar 

  49. Ansari R, Mohammadi V, Shojaei MF, Gholami R, Sahmani S (2014) Postbuckling analysis of Timoshenko nanobeams including surface stress effect. Int J Eng Sci 75:1–10

    Article  Google Scholar 

  50. Sharabiani PA, Yazdi MRH (2013) Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos B Eng 45(1):581–586

    Article  Google Scholar 

  51. Ansari R, Pourashraf T, Gholami R (2015) An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Struct 93:169–176

    Article  Google Scholar 

  52. Zhang J, Wang C, Chen W (2014) Surface and piezoelectric effects on the buckling of piezoelectric nanofilms due to mechanical loads. Meccanica 49(1):181–189

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang J-S, Shimada T, Wang G-F, Kitamura T (2014) Effects of chirality and surface stresses on the bending and buckling of chiral nanowires. J Phys D Appl Phys 47(1):015302

    Article  ADS  Google Scholar 

  54. Zhang Y, Pang M, Chen W (2015) Transverse vibrations of embedded nanowires under axial compression with high-order surface stress effects. Phys E 66:238–244

    Article  Google Scholar 

  55. Kubiak T (2012) Nonlinear plate theory for postbuckling behaviour of thin-walled structures under static and dynamic load. In: Awrejcewicz J, Hagedorn P (eds) Nonlinearity, bifurcation and chaos: theory and applications. InTech Open Access Publisher. doi:10.5772/48961

  56. Ogata S, Li J, Yip S (2002) Ideal pure shear strength of aluminum and copper. Science 298(5594):807–811

    Article  ADS  Google Scholar 

  57. Zhu R, Pan E, Chung PW, Cai X, Liew KM, Buldum A (2006) Atomistic calculation of elastic moduli in strained silicon. Semicond Sci Technol 21(7):906

    Article  ADS  Google Scholar 

  58. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ansari or R. Gholami.

Appendix

Appendix

The resultant forces and bending moments corresponding to the bulk and surface parts can be introduced as

$$N_{xx} = A_{11} \left( {U_{0}^{{\prime }} + \frac{1}{2}\left( {W^{{\prime }} } \right)^{2} } \right) - B_{11} W^{{{\prime \prime }}} - N_{T} + \left( {\frac{{A_{44} \Delta \tau^{s} }}{2} + \frac{{B_{44} \bar{\tau }^{s} }}{h}} \right)W^{{{\prime \prime }}}$$
(27)
$$M_{xx} = B_{11} \left( {U_{0}^{{\prime }} + \frac{1}{2}\left( {W^{{\prime }} } \right)^{2} } \right) - D_{11} W^{{{\prime \prime }}} - M_{T} + \left( {\frac{{B_{44} \Delta \tau^{s} }}{2} + \frac{{D_{44} \bar{\tau }^{s} }}{h}} \right)W^{{{\prime \prime }}}$$
(28)
$$N_{xx}^{s} = \left( b \bar{\mathcal{A}}^{s} + 2A_{11}^{s} \right)\left( U_{0}^{\prime} + \frac{1}{2}\left( W^{\prime} \right)^{2} \right) - \left( \frac{bh}{2}\Delta {\mathcal{A}}^{s} + 2B_{11}^{s} \right)W^{\prime \prime } + \left( b \bar{\tau}^{s} + 2 \theta_{11}^{s} \right)\left( 1 - \frac{1}{2}\left( W^{\prime} \right)^{2} \right)$$
(29)
$$M_{xx}^{s} = \left( {\frac{bh}{2}\Delta {\mathcal{A}}^{s} + 2B_{11}^{s} } \right)\left( {U_{0}^{{\prime }} + \frac{1}{2}\left( {W^{{\prime }} } \right)^{2} } \right) - \left( {\frac{{bh^{2} }}{4}{\bar{\mathcal{A}}}^{s} + 2D_{11}^{s} } \right)W^{{{\prime \prime }}} + \left( {\frac{bh}{2}\Delta \tau^{s} + 2\theta_{22}^{s} } \right)\left( {1 - \frac{1}{2}\left( {W^{{\prime }} } \right)^{2} } \right)$$
(30)

in which

$$\bar{\tau }^{s} = \tau^{s + } + \tau^{s - } ,\quad\Delta \tau^{s} = \tau^{s + } - \tau^{s - } ,\quad{\bar{\mathcal{A}}}^{s} = \lambda^{s + } + 2\mu^{s + } + \lambda^{s - } + 2\mu^{s - } ,\quad\Delta {\mathcal{A}}^{s} = \lambda^{s + } + 2\mu^{s + } - \lambda^{s - } - 2\mu^{s - }$$

and

$$\left\{ {\begin{array}{*{20}c} {A_{11} } \\ {B_{11} } \\ {D_{11} } \\ \end{array} } \right\} = \mathop \int \limits_{A} \left( {\lambda + 2\mu } \right)\left\{ {\begin{array}{*{20}c} 1 \\ {\bar{z}} \\ {\bar{z}^{2} } \\ \end{array} } \right\}dA, \quad \left\{ {\begin{array}{*{20}c} {A_{44} } \\ {B_{44} } \\ {D_{44} } \\ \end{array} } \right\} = \mathop \int \limits_{A} \frac{\nu }{{\left( {1 - \nu } \right)}}\left\{ {\begin{array}{*{20}c} 1 \\ {\bar{z}} \\ {\bar{z}^{2} } \\ \end{array} } \right\}dA$$
(31)
$$\left\{ {\begin{array}{*{20}c} {A_{11}^{s} } \\ {B_{11}^{s} } \\ {D_{11}^{s} } \\ \end{array} } \right\} = \mathop \int \limits_{A} \left( {\lambda^{s} + 2\mu^{s} } \right)\left\{ {\begin{array}{*{20}c} 1 \\ {\bar{z}} \\ {\bar{z}^{2} } \\ \end{array} } \right\}dz,\quad \left\{ {\begin{array}{*{20}c} {\theta_{11}^{s} } \\ {\theta_{22}^{s} } \\ \end{array} } \right\} = \mathop \int \limits_{A} \tau^{s} \left\{ {\begin{array}{*{20}c} 1 \\ {\bar{z}} \\ \end{array} } \right\}dz,$$
(32)

Furthermore, the resultant thermal force can be defined as

$$N_{T} = \mathop\int \limits_{A} \beta \left( {T\left( z \right) - T_{0} } \right)dA,\quad M_{T} = \mathop \int \limits_{A} \beta \left( {T\left( z \right) - T_{0} } \right)\bar{z}dA$$
(33)

where U 0 and W are the displacement of neutral axis in the x and lateral directions, respectively. Also, \(\bar{z} = z - z_{0}\) and z 0 denote the z coordinate associated with the physical neutral surface. Moreover, \(\lambda = E\nu /\left( {1 - \nu^{2} } \right)\) and \(\mu = E/\left( {2\left( {1 + \nu } \right)} \right)\) are Lame constants, \(\beta = \alpha E/\left( {1 - \nu } \right)\) is the stress–temperature modulus and α is the thermal expansion coefficient, \(\Delta T = T - T_{0}\), where Trepresents the temperature distribution through the FG beam and T 0 is reference temperature. Moreover, it is noted that the position of neutral line z 0 can be obtained by the following equation

$$z_{0} = \frac{{\mathop\int \nolimits_{A} z\left( {\lambda \left( z \right) + 2\mu \left( z \right)} \right)dA}}{{\mathop \int \nolimits_{A} \left( {\lambda \left( z \right) + 2\mu \left( z \right)} \right)dA}}$$
(34)

In this work, the initial uniform temperature (T 0 = 300° K) is assumed to be a stress free state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Pourashraf, T., Gholami, R. et al. Postbuckling behavior of functionally graded nanobeams subjected to thermal loading based on the surface elasticity theory. Meccanica 52, 283–297 (2017). https://doi.org/10.1007/s11012-016-0396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0396-0

Keywords

Navigation