Skip to main content
Log in

Surface and piezoelectric effects on the buckling of piezoelectric nanofilms due to mechanical loads

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Piezoelectric nanofilms (PNFs) are often subject to compression in their applications. Bulking thus occurs for those with a thin thickness. In this paper we have conducted a comprehensive study of the bucking behaviors of PNFs which are treated as sandwich-plates to account for the effect of the surface elasticity and piezoelectricity. The results from the analytic formulae show that the surface and piezoelectric effects influence not only the critical buckling load but also the associated modes. Specifically the two effects depend strongly on the nature of the residual surface stress and the direction of the voltage applied on PNFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242

    Article  ADS  Google Scholar 

  2. Wang XD, Zhou J, Song JH, Liu J, Xu NS, Wang ZL (2006) Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6:2768

    Article  ADS  Google Scholar 

  3. He JH, Hsin CL, Liu J, Chen LJ, Wang ZL (2007) Piezoelectric gated diode of a single ZnO nanowire. Adv Mater 19:781

    Article  Google Scholar 

  4. Lao CS, Kuang Q, Wang ZL, Park MC, Deng YL (2007) Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. Appl Phys Lett 90:262107

    Article  ADS  Google Scholar 

  5. Wang GF, Feng XQ (2009) Surface effects on buckling of nanowires under uniaxial compression. Appl Phys Lett 94:141913

    Article  ADS  Google Scholar 

  6. Gao Y, Wang ZL (2007) Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett 7:2499

    Article  ADS  Google Scholar 

  7. Shao ZZ, Wen LY, Wu DM, Wang XF, Zhang XA, Chang SL (2010) A continuum model of piezoelectric potential generated in a bent ZnO nanorod. J Phys D, Appl Phys 43:245403

    Article  ADS  Google Scholar 

  8. Liang X, Shen SP (2012) Effect of electrostatic force on a piezoelectric nanobeam. Smart Mater Struct 21:015001

    Article  ADS  Google Scholar 

  9. Schubert MA, Senz S, Alexe M, Hesse D, Gösele U (2008) Finite element method calculations of ZnO nanowires for nanogenerators. Appl Phys Lett 92:122904

    Article  ADS  Google Scholar 

  10. Falconi C, Mantinia G, Amico AD, Wang ZL (2009) Studying piezoelectric nanowires and nanowalls for energy harvesting. Sens Actuators B 139:511

    Article  Google Scholar 

  11. Sun CL, Shi J, Wang XD (2010) Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J Appl Phys 108:034309

    Article  ADS  Google Scholar 

  12. Zhao MH, Wang ZL, Mao SX (2004) Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett 4:587

    Article  ADS  Google Scholar 

  13. Agrawal R, Peng B, Gdoutos EE, Espinosa HD (2008) Elasticity size effects in ZnO nanowires-a combined experimental-computational approach. Nano Lett 8:3668

    Article  ADS  Google Scholar 

  14. Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7:3691

    Article  ADS  Google Scholar 

  15. He MR, Shi Y, Zhou W, Chen JW, Yan YJ, Zhu J (2009) Diameter dependence of modulus in zinc oxide nanowires and the effect of loading mode: in situ experiments and universal core-shell approach. Appl Phys Lett 95:091912

    Article  ADS  Google Scholar 

  16. Zhang YH, Hong JW, Liu B, Fang DN (2010) Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study. Nanotechnology 21:015701

    Article  ADS  Google Scholar 

  17. Li H, Balachandran B (2006) Buckling and free oscillations of composite microresonators. J Microelectromech Syst 15:42

    Article  Google Scholar 

  18. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139

    Article  ADS  Google Scholar 

  19. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57:291

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang GF, Feng XQ (2010) Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhys Lett 91:56007

    Article  ADS  Google Scholar 

  21. Samaei AT, Bakhtiari M, Wang GF (2012) Timoshenko beam model for buckling of piezoelectric nanowires with surface effects. Nanoscale Res Lett 7:201

    Article  ADS  Google Scholar 

  22. Huang GY, Yu SW (2006) Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys Status Solidi B 243:R22

    Article  ADS  Google Scholar 

  23. Dai SX, Gharbi M, Sharma P, Park HS (2011) Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. J Appl Phys 110:104305

    Article  ADS  Google Scholar 

  24. Yan Z, Jiang LY (2010) Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J Phys D, Appl Phys 44:075404

    Article  ADS  Google Scholar 

  25. Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22:245703

    Article  ADS  Google Scholar 

  26. Zhang J, Wang CY (2012) Vibrating piezoelectric nanofilms as sandwich nanoplates. J Appl Phys 111:094309

    Article  ADS  Google Scholar 

  27. Zhang J, Wang CY, Adhikari S (2012) Surface effect on the buckling of piezoelectric nanofilms. J Phys D, Appl Phys 45:285301

    Article  Google Scholar 

  28. Yan Z, Jiang LY (2012) Surface effects on the vibration and buckling of piezoelectric nanoplates. Europhys Lett 99:27007

    Article  ADS  Google Scholar 

  29. Gurtin ME, Markenscoff X, Thurston RN (1976) Effect of surface stress on the natural frequency of thin crystals. Appl Phys Lett 29:529

    Article  ADS  Google Scholar 

  30. Srinivas S, Li JY (2005) The effective magnetoelectric coefficients of polycrystalline multiferroic composites. Acta Mater 53:4135

    Article  Google Scholar 

  31. Izumi S, Hara S, Kumagai T, Sakai S (2004) A method for calculating surface stress and surface elastic constants by molecular dynamics: application to the surface of crystal and amorphous silicon. Thin Solid Films 467:253

    Article  ADS  Google Scholar 

  32. Timoshenko S (1940) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

  33. He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798

    Article  ADS  Google Scholar 

Download references

Acknowledgement

J.Z. acknowledge the support from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wang, C. & Chen, W. Surface and piezoelectric effects on the buckling of piezoelectric nanofilms due to mechanical loads. Meccanica 49, 181–189 (2014). https://doi.org/10.1007/s11012-013-9784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9784-x

Keywords

Navigation