Skip to main content
Log in

New concept about existence of Hartmann boundary layer in peristalsis through curved channel-asymptotic solution

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The main objective of this paper is to investigate boundary layer character of the velocity in peristaltic flow of a Sisko fluid in a curved channel under the influence of strong imposed radial magnetic field. The Sisko fluid model falls in the category of generalized Newtonian fluid models. The constitutive equation of Sisko model is described in terms of three material constants namely; power-law index (n), infinite shear rate viscosity (a) and consistency index (b). This model is capable of predicting shear-thinning and shear-thickening effects for n < 1 and n > 1, respectively. The equation governing the flow is first derived under the assumptions of long wavelength and low Reynolds number, and then made dimensionless by defining appropriate parameters. In dimensionless form it contains three dimensionless parameters namely; generalized ratio of infinite-shear rate viscosity to consistency index, power-law index and Hartmann number characterizing strength of the imposed magnetic field. It is found that the governing equation of flow becomes singular for large values of Hartmann number. Asymptotic solutions representing flow velocity at large values of Hartmann number are reported for two specific values of power-law index (namely n = 1 and n = 1/2) using singular perturbation technique. The flow velocity in either case exhibits qualitatively similar behavior. In fact, it exhibits boundary layer character i.e., it varies sharply in thin layer near the walls and varies linearly over rest of the cross-sections. This is contrary to what that is observed for flow velocity in straight channel (where except in thin layer near the channel walls the velocity over rest of the cross-section is uniform). The estimates of boundary layer thickness at upper and lower walls in either case are different. Moreover, the boundary layer thickness in either case is found to be inversely proportional to the Hartmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taber LA, Zhang J, Perucchio R (2006) Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. ASME J Biomech Eng 129:441–449

    Article  Google Scholar 

  2. Jackman WS, Lougheed W, Marliss EB, Zinman B, Albisser AM (1980) For insulin infusion: a miniature precision peristaltic pump and silicone rubber reservoir. Diabetes Care 3:322–331

    Article  Google Scholar 

  3. Tripathi D, Anwar Beg O (2014) A study on peristaltic flow of nanofluids: application in drug delivery systems. Int J Heat Mass Transf 70:61–70

    Article  Google Scholar 

  4. Fung YC, Yih CS (1968) Peristaltic transport. Trans ASME J Appl Mech 33:669–675

    Article  MATH  Google Scholar 

  5. Shapiro AH, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelength at low Reynolds number. J Fluid Mech 37:799–825

    Article  ADS  Google Scholar 

  6. Lykoudis P, Roos R (1970) The fluid mechanics of the ureter from a lubrication theory point of view. J Fluid Mech 43:661–674

    Article  ADS  Google Scholar 

  7. Pozrikidis C (1987) A study of peristaltic flow. J Fluid Mech 180:515–527

    Article  ADS  Google Scholar 

  8. Takabatake S, Ayukawa K, Mori A (1988) Peristaltic pumping in circular cylindrical tubes: a numerical study of fluid transport and its efficiency. J Fluid Mech 193:267–283

    Article  ADS  Google Scholar 

  9. Böhme G, Friedrich R (1983) Peristaltic flow of viscoelastic liquids. J Fluid Mech 128:109–122

    Article  ADS  MATH  Google Scholar 

  10. Srivastava LM, Srivastava VP (1984) Peristaltic transport of blood: casson model II. J Biomech 17:821–829

    Article  Google Scholar 

  11. Siddiqui AM, Schwarz WH (1994) Peristaltic flow of second order fluid in tubes. J Non Newton Fluid Mech 53:257–284

    Article  Google Scholar 

  12. Mekheimer KhS, El-Shehawey EF, Alaw AM (1998) Peristaltic motion of a particle fluid suspension in a planar channel. Int J Theor Phys 37:2895–2920

    Article  MATH  Google Scholar 

  13. Hayat T, Wang Y, Siddiqui AM, Hutter K, Asghar S (2002) Peristaltic transport of a third order fluid in a circular cylindrical tube. Math Models Methods Appl Sci 12:1691–1706

    Article  MathSciNet  MATH  Google Scholar 

  14. Hayat T, Afsar A, Ali N (2008) Peristaltic transport of a Johnson–Segalman fluid in an asymmetric channel. Math Compt Model 47:380–400

    Article  MathSciNet  MATH  Google Scholar 

  15. Hayat T, Ali N (2007) A mathematical description of peristaltic hydromagnetic flow in a tube. Appl Math Comput 188:1491–1502

    MathSciNet  MATH  Google Scholar 

  16. Ali N, Hayat T (2007) Peristaltic motion of a Carreau fluid in an asymmetric channel. Appl Math Comput 193:535–552

    MathSciNet  MATH  Google Scholar 

  17. Wang Y, Hayat T, Hutter K (2007) Peristaltic flow of a Johnson–Segalman fluid through a deformable tube. Theor Comput Fluid Dyn 21:369–380

    Article  MATH  Google Scholar 

  18. Tripathi D, Anwar Beg O (2014) Peristaltic propulsion of generalized Burgers’ fluids through a non-uniform porous medium: a study of chyme dynamics through the intestine. Math Biosci 248:67–77

    Article  MathSciNet  MATH  Google Scholar 

  19. Tripathi D, Anwar Bég O (2014) A study on peristaltic flow of nanofluids: application in drug delivery systems. Int J Heat Mass Transf 70:61–70

    Article  Google Scholar 

  20. Akram S, Nadeem S (2013) Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: closed form solutions. J Magn Magn Mater 328:11–20

    Article  ADS  Google Scholar 

  21. Hayat T, Ali N, Asghar S (2007) Hall effects on peristaltic flow of a Maxwell fluid in a porous medium. Phys Lett A 363:397–403

    Article  ADS  MATH  Google Scholar 

  22. Kothandapani M, Srinivas S (2008) On the influence of wall properties in the MHD peristaltic transport with heat transfer and porous medium. Phys Lett A 372:4586–4591

    Article  ADS  MATH  Google Scholar 

  23. Srinivas S, Kothandapani M (2009) The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Appl Math Comput 213:197–208

    MathSciNet  MATH  Google Scholar 

  24. Sato H, Kawai T, Fujita T, Okabe M (2000) Two dimensional peristaltic flow in curved channels. Trans Jpn Soc Mech Eng B 66:679–685

    Article  Google Scholar 

  25. Ali N, Sajid M, Hayat T (2010) Long wavelength flow analysis in a curved channel. Z Naturforsch 65a:191–196

    ADS  Google Scholar 

  26. Ali N, Sajid M, Javed T, Abbas Z (2010) Heat transfer analysis of peristaltic flow in a curved channel. Int J Heat Mass Transf 53:3319–3325

    Article  MATH  Google Scholar 

  27. Ali N, Sajid M, Abbas Z, Javed T (2010) Non-Newtonian fluid flow induced by peristaltic waves in a curved channel. Eur J Mech B/Fluids 29:3511–3521

    Article  MathSciNet  MATH  Google Scholar 

  28. Hayat T, Javed M, Hendi A (2011) Peristaltic transport of viscous fluid in a curved channel with compliant walls. Int J Heat Mass Transf 54:1615–1621

    Article  MATH  Google Scholar 

  29. Hayat T, Noreen S, Alsaedi A (2012) Effect of an induced magnetic field on peristaltic flow of non-Newtonian fluid in a curved channel. J Mech Med Biol 12:1250058–1250084

    Article  Google Scholar 

  30. Abbasi FM, Hayat T, Alsaedi A (2015) Numerical analysis for MHD peristaltic transport of Carreau–Yasuda fluid in a curved channel with Hall effects. J Magn Magn Mater 382:104–110

    Article  ADS  Google Scholar 

  31. Hina S, Hayat T, Mustafa M, Aldossary OM, Asghar S (2012) Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel. J Mech Med Biol 12:1–16

    Article  Google Scholar 

  32. Hina S, Hayat T, Asghar S (2012) Heat and mass transfer effects on the peristaltic flow of Johnson–Segalman fluid in a curved channel with compliant walls. Int J Heat Mass Transf 55:3511–3521

    Article  MATH  Google Scholar 

  33. Hina S, Mustafa M, Hayat T, Alsaedi A (2013) Peristaltic flow of pseudo plastic fluid in a curved channel with wall properties. ASME J Appl Mech 80:024501–024507

    Article  Google Scholar 

  34. Narla VK, Prasad KM, Ramanamurthy JV (2013) Peristaltic motion of viscoelastic fluid with fractional second grade model in curved channels. Chin J Eng 2013:582390–582397

    Article  MATH  Google Scholar 

  35. Ramanamurthy JV, Prasad KM, Narla VK (2013) Unsteady peristaltic transport in curved channels. Phys Fluids 25:091903–091920

    Article  ADS  MATH  Google Scholar 

  36. Kalantari A, Sadeghy K, Sadeqi S (2013) Peristaltic flow of non-Newtonian fluids through curved channels: a numerical study. Ann Trans Nordic Rheol Soc 21:163–170

    Google Scholar 

  37. Asghar S, Minhas T, Ali A (2014) Existence of a Hartmann layer in the peristalsis of Sisko fluid. Chin Phys B 24:054702–0547027

    Article  Google Scholar 

  38. Barnes HA, Hutton JF, Watters K (1993) An introduction to rheology. Elsevier Science Publishers B.V, Amsterdam

    Google Scholar 

  39. Bush AW (1994) Perturbation methods for engineers and scientists, vol 12. CRC Press, Boca Raton

    MATH  Google Scholar 

  40. Dyke MV (1964) Perturbation methods in fluid mechanics. Academic Press, New York

    MATH  Google Scholar 

  41. Wang Y, Hayat T, Ali N, Oberlack M (2008) Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. Phys A 387:347–362

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The second author is grateful to the Higher Education Commission (HEC) Pakistan for award of indigenous scholarship for his Ph.D. studies. We further thank the anonymous reviewer for his useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Javid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Javid, K., Sajid, M. et al. New concept about existence of Hartmann boundary layer in peristalsis through curved channel-asymptotic solution. Meccanica 51, 1783–1795 (2016). https://doi.org/10.1007/s11012-015-0346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0346-2

Keywords

Navigation