Skip to main content
Log in

Peristaltic flow of a Johnson-Segalman fluid through a deformable tube

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

To understand theoretically the flow properties of physiological fluids we have considered as a model the peristaltic motion of a Johnson–Segalman fluid in a tube with a sinusoidal wave traveling down its wall. The perturbation solution for the stream function is obtained for large wavelength and small Weissenberg number. The expressions for the axial velocity, pressure gradient, and pressure rise per wavelength are also constructed. The general solution of the governing nonlinear partial differential equation is given using a transformation method. The numerical solution is also obtained and is compared with the perturbation solution. Numerical results are demonstrated for various values of the physical parameters of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Latham, T.W.: Fluid motion in a peristaltic pump. MS Thesis, M III Cambridge, Mass (1966)

  2. Jafrin M.Y. and Shapiro A.H. (1971). Peristaltic pumping. Ann. Rev. Fluid Mech. 3: 13–35

    Article  ADS  Google Scholar 

  3. Burns J.C. and Parkes J. (1967). Peristaltic motion. J. Fluid Mech. 29: 731–743

    Article  ADS  Google Scholar 

  4. Barton C. and Raymor S. (1968). Peristaltic flows in tubes. Bull. Math. Bio. Phy. 30: 663–680

    Article  MATH  Google Scholar 

  5. Chow T.S. (1970). Peristaltic transport in a circular cylindrical pipe. J. Appl. Mech. 37: 901–906

    MATH  Google Scholar 

  6. Shapiro A.H., Jaffrin M.Y. and Weinberg S.L. (1969). Peristaltic pumping with long wavelength at low Roynolds number. J. Fluid Mech. 37: 799–825

    Article  ADS  Google Scholar 

  7. Jaffrin M.Y. (1973). Inertia and streamline curvature effects on peristaltic pumping. Int. J. Eng. Sci. 11: 681–699

    Article  Google Scholar 

  8. Liron N. (1976). On peristaltic flow and its efficiency. Bull. Math. Biol. 38: 573–596

    MATH  Google Scholar 

  9. Takabatake S. and Ayukawa K. (1982). Numerical study of two-dimensional peristaltic flows. J. Fluid Mech. 122: 439–465

    Article  MATH  ADS  Google Scholar 

  10. Radhakrishnamacharya G. (1982). Long wavelength approximation to peristaltic motion of power law fluid. Rheol. Acta 21: 30–35

    Article  MATH  Google Scholar 

  11. Raju K.K. and Devanathan R. (1972). Peristaltic motion of a non-Newtonian fluid. Rheol. Acta 11: 170–178

    Article  MATH  Google Scholar 

  12. Raju K.K. and Devanathan R. (1974). Peristaltic motion of a non-Newtonian fluid, Part II. Viscoelastic fluid. Rheol. Acta 13: 944–948

    Article  MATH  Google Scholar 

  13. Srivastava L.M. (1986). Peristaltic transport of a couple stress fluid. Rheol. Acta 25: 638–641

    Article  Google Scholar 

  14. Srivastava L.M. and Srivastava V.P. (1988). Peristaltic transport of a power law fluid: application to the ductus efferentes of the reproductive tracts. Rheol. Acta 27: 428–433

    Article  Google Scholar 

  15. Siddiqui A.M., Provost A. and Schwarz W.H. (1991). Peristaltic pumping of a second order fluid in a planar channel. Rheol. Acta 30: 249–262

    Article  Google Scholar 

  16. Siddiqui A.M. and Schwarz W.H. (1993). Peristaltic pumping of a third order fluid in a planar channal. Rheol. Acta 32: 47–56

    Article  Google Scholar 

  17. Siddiqui A.M. and Schwarz W.H. (1994). Peristaltic flow of a second order fluid in tubes. J. Non-Newton. Fluid Mech. 53: 257–284

    Article  Google Scholar 

  18. Böhme G. and Friedrich R. (1983). Peristaltic flow of viscoelastic liquids. J. Fluid Mech. 128: 109–122

    Article  MATH  ADS  Google Scholar 

  19. Misra J.C. and Pandey S.K. (1999). Peristaltic transport of a non-Newtonian fluid with a peripheral layer. Int. J. Eng. Sci. 37: 1841–1858

    Article  Google Scholar 

  20. Misra J.C. and Pandey S.K. (2001). Peristaltic flow of a multilayered power-law fluid through a cylindrical tube. Int. J. Eng. Sci. 39: 387–402

    Article  Google Scholar 

  21. Hayat T., Wang Y., Siddiqui A.M., Hutter K. and Asghar S. (2002). Peristaltic transport of a third order fluid in a circular cylindrical tube. Math. Models Methods Appl. Sci. 12(12): 1691–1706

    Article  MATH  Google Scholar 

  22. Hayat T., Wang Y., Siddiqui A.M. and Hutter K. (2003). Peristaltic motion of a Johnson–Segalman fluid in a planar channel. Math. Probl. Eng. 2003(1): 1–23

    Article  MATH  Google Scholar 

  23. Kolkka R.W., Malkus D.S., Hansen M.G., Ierly G.R. and Worthing R.A. (1988). Spurt phenomenon of the Johnson–Segalman fluid and related models. J. Non-Newton. Fluid Mech. 29: 303–335

    Article  Google Scholar 

  24. McLeish T.C.B. and Ball R.C. (1986). A molecular approach to the spurt effect in polymer melt flow. J. Polym. Sci. (B) 24: 1735–1745

    Google Scholar 

  25. Malkus D.S., Nohel J.A. and Plohr B.J. (1990). Dynamics of shear flow of a non-Newtonian fluid. J. Comput. Phys. 87: 464–487

    Article  MATH  Google Scholar 

  26. Malkus D.S., Nohel J.A. and Plohr B.J. (1991). Analysis of new phenomenon in shear flow of non-Newtonian fluids. SIAM J. Appl. Math. 51: 899–929

    Article  MATH  Google Scholar 

  27. Migler K.B., Hervert H. and Leger L. (1990). Slip transition of a polymer melt under shear stress. Phys. Rev. Lett. 70: 287–290

    Article  ADS  Google Scholar 

  28. Migler K.B., Massey G., Hervert H. and Leger L. (1994). The slip transition at the polymer-solid interface. J. Phys. Condens. Matter A 6: 301–304

    Article  ADS  Google Scholar 

  29. Ramamurthy A.V. (1986). Wall slip in viscous fluids and the influence of material of construction. J. Rheol. 30: 337–357

    Article  Google Scholar 

  30. Kraynik M. and Schowalter W.R. (1981). Slip at the wall and extrudate roughness with aqueous solutions of polyvinyl alcohal and sodium borate. J. Rheol. 25: 95–114

    Article  Google Scholar 

  31. Lim F.J. and Schowalter W.R. (1989). Wall slip of narrow molecular weight distribution polybutadienes. J. Rheol. A. 33: 1359–1382

    Article  Google Scholar 

  32. Segalman D. and Johnson M.W. Jr. (1977). A model for viscoelastic fluid behaviour which allows non-affine deformation. J. Non-Newton. Fluid Mech. 2: 255–270

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Wang.

Additional information

Communicated by M.Y. Hussaini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Hayat, T. & Hutter, K. Peristaltic flow of a Johnson-Segalman fluid through a deformable tube. Theor. Comput. Fluid Dyn. 21, 369–380 (2007). https://doi.org/10.1007/s00162-007-0054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-007-0054-1

Keywords

PACS

Navigation