Skip to main content
Log in

A new displacement-based framework for non-local Timoshenko beams

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, a new theoretical framework is presented for modeling non-locality in shear deformable beams. The driving idea is to represent non-local effects as long-range volume forces and moments, exchanged by non-adjacent beam segments as a result of their relative motion described in terms of pure deformation modes of the beam. The use of these generalized measures of relative motion allows constructing an equivalent mechanical model of non-local effects. Specifically, long-range volume forces and moments are associated with three spring-like connections acting in parallel between couples of non-adjacent beam segments, and separately accounting for pure axial, pure bending and pure shear deformation modes. The variational consistency of the proposed non-local beam model is demonstrated by minimization of an appropriate total potential energy functional. Numerical results concerning the static behavior for different boundary and loading conditions are presented. It is shown that the proposed non-local beam model is able to capture experimental data on the static deflection of micro-beams, available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435

    Article  Google Scholar 

  2. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  ADS  Google Scholar 

  3. Aifantis EC (1999) Gradient deformation models at nano, micro, and macroscales. J Eng Mater Technol-Trans ASME 121:189–202

    Article  Google Scholar 

  4. Chang CS, Askes H, Sluys LJ (2002) Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture. Eng Fract Mech 69:1907–1924

    Article  Google Scholar 

  5. Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a peridynamic bar. J Elast 73:173–190

    Article  MathSciNet  Google Scholar 

  6. Cosserat E, Cosserat F (1909) Théorie des Corps Déformables. Hermann, Paris

    Google Scholar 

  7. Nowacki W (1986) Theory of Asymmetric Elasticity. Polish Scientific Publishers, Warsaw

    Google Scholar 

  8. Kröner E (1963) On the physical reality of torque stresses in continuum mechanics. Int J Eng Sci 1(2):261–262

    Article  Google Scholar 

  9. Lakes RS (1991) Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua. J Eng Mater Technol 113:148–155

    Article  Google Scholar 

  10. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55(6):495–533

    Article  ADS  Google Scholar 

  11. Wang LF, Hu HY (2005) Flexural wave propagation in single-walled carbon nanotube. Phys Rev B 71:195412–195418

    Article  ADS  Google Scholar 

  12. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  ADS  Google Scholar 

  13. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060–1067

    Article  Google Scholar 

  14. Tang PY (1983) Interpretation of bend strength increase of graphite by the couple stress theory. Comput Struct 16:45–49

    Article  Google Scholar 

  15. Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Mater 34(4):559–564

    Article  Google Scholar 

  16. Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71:195404

    Article  ADS  Google Scholar 

  17. Xu M (2006) Free transverse vibrations of nano-to-micron scale beams. Proc R Soc A 462:2977–2995

    Article  ADS  Google Scholar 

  18. Wang Q, Varadan VK (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15:659–666

    Article  ADS  Google Scholar 

  19. Lu P, Lee HP, Lu C, Zhang PQ (2007) Application of nonlocal beam models for carbon nanotubes. Int J Solids Struct 44:5289–5300

    Article  Google Scholar 

  20. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  Google Scholar 

  21. Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E 41:1651–1655

    Article  ADS  Google Scholar 

  22. Kong S, Zhou S, Nie Z, Wang K (2008) The size-dependent natural frequency of Bernoulli-Euler micro-beams. Int J Eng Sci 46:427–437

    Article  Google Scholar 

  23. Zhang YY, Wang CM, Challamel N (2010) Bending, buckling and vibration of micro/nanobeams by hybrid nonlocal beam model. J Eng Mech 136(5):562–574

    Article  Google Scholar 

  24. Wang B, Zhao J, Zhou S (2010) A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur J Mech A/Solids 29:591–599

    Article  Google Scholar 

  25. Ma HM, Gao X-L, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56:3379–3391

    Article  MathSciNet  ADS  Google Scholar 

  26. Pradhan SC (2012) Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory. Finite Elem Anal Des 50:8–20

    Article  Google Scholar 

  27. Yang Y, Lim CW (2012) Non-classical stiffness strengthening size effects for free vibration of a nonlocal nanostructure. Int J Mech Sci 54:57–68

    Article  Google Scholar 

  28. Lim CW (2010) On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Appl Math Mech 31(1):37–54

    Article  MathSciNet  Google Scholar 

  29. Lim CW, Yang Y (2010) New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes. J Comput Theor Nanosci 7(6):988–995

    Article  Google Scholar 

  30. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305–312

    Article  Google Scholar 

  31. Wang Q, Shindo Y (2006) Nonlocal continuum models for carbon nanotubes subjected to static loading. J Mech Mater Struct 1:663–680

    Article  Google Scholar 

  32. Civalek Ö, Demir Ç (2011) Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory. Appl Math Model 35:2053–2067

    Article  MathSciNet  Google Scholar 

  33. Wang Q, Liew KM (2007) Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A 363:236–242

    Article  ADS  Google Scholar 

  34. Wang CM, Kitipornchai S, Lim CW, Eisenberger M (2008) Beam bending solutions based on nonlocal Timoshenko beam theory. J Eng Mech 134:475–481

    Article  Google Scholar 

  35. Challamel N, Wang CM (2008) The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19:345703

    Article  Google Scholar 

  36. Park SK, Gao X-L (2006) Bernoulli-Euler beam model based on a modified couple stress theory. J Micromech Microeng 16:2355–2359

    Article  Google Scholar 

  37. Chen SH, Feng B (2011) Size effect in micro-scale cantilever beam bending. Acta Mech 219:291–307

    Article  Google Scholar 

  38. Akgöz B, Civalek Ö (2012) Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch Appl Mech 82:423–443

    Article  Google Scholar 

  39. Di Paola M, Failla G, Sofi A, Zingales M (2011) A mechanically based approach to non-local beam theories. Int J Mech Sci 53:676–687

    Article  Google Scholar 

  40. Di Paola M, Failla G, Sofi A, Zingales M (2012) On the vibrations of a mechanically based non-local beam model. Comput Mater Sci 64:278–282

    Article  Google Scholar 

  41. Di Paola M, Failla G, Zingales M (2013) Non-local stiffness and damping models for shear-deformable beams. Eur J Mech A/Solid 40:69–83

    Article  Google Scholar 

  42. Di Paola M, Failla G, Zingales M (2009) Physically-based approach to the mechanics of strong non-local linear elasticity theory. J Elast 97:103–130

    Article  Google Scholar 

  43. Di Paola M, Pirrotta A, Zingales M (2010) Mechanically-based approach to non-local elasticity: variational principles. Int J Solids Struct 47:539–548

    Article  Google Scholar 

  44. Di Paola M, Failla G, Zingales M (2010) The mechanically-based approach to 3D non-local linear elasticity theory: long-range central interactions. Int J Solids Struct 47:2347–2358

    Article  Google Scholar 

  45. Di Paola M, Sofi A, Zingales M (2011) Stochastic analysis of one-dimensional heterogeneous solids with long-range interactions. Int J Multiscale Comput Eng 9(4):379–394

    Article  Google Scholar 

  46. Failla G, Santini A, Zingales M (2010) Solution strategies for 1D elastic continuum with long-range interactions: smooth and fractional decay. Mech Res Commun 37:13–21

    Article  Google Scholar 

  47. Fuchs MB (1991) Unimodal beam elements. Int J Solids Struct 27(5):533–545

    Article  Google Scholar 

  48. Fuchs MB (1997) Unimodal formulation of the analysis and design problems for framed structures. Comput Struct 63(4):739–747

    Article  Google Scholar 

  49. Friswell MI, Adhikari S, Lei Y (2007) Non-local finite element analysis of damped beams. Int J Solids Struct 44:7564–7576

    Article  Google Scholar 

  50. Mindlin RD (1965) Second gradient of strain and surface tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  51. Lei Y, Friswell MI, Adhikari S (2006) A Galerkin method for distributed systems with non-local damping. Int J Solids Struct 43:3381–3400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Sofi.

Appendices

Appendix 1

In this Appendix, the derivation of identity (22) is presented. To this aim, first Eq. (22) is rewritten in the following form:

$$ \begin{aligned} \int_{0}^{L} {\int_{0}^{L} {\left[ {q_{x} \left( {x,\xi } \right)u\left( x \right) + q_{z} \left( {x,\xi } \right)v\left( x \right) + q_{\varphi \varphi} \left( {x,\xi } \right)\varphi \left( x \right) + q_{\varphi z} \left( {x,\xi } \right)\varphi \left( x \right)} \right]{\text{d}}x{\text{d}}\xi } } \hfill \\ = - \frac{1}{2}\int_{0}^{L} {\int_{0}^{L} {\left[ {q_{x} \left( {x,\xi } \right)\eta \left( {x,\xi } \right) + q_{\varphi \varphi } \left( {x,\xi } \right)\theta \left( {x,\xi } \right) + q_{\varphi z} \left( {x,\xi } \right)\psi \left( {x,\xi } \right)} \right]{\text{d}}x{\text{d}}\xi } } \hfill \\ \end{aligned} $$
(37)

where the definitions of the vectors \( {\mathbf{u}}\left( x \right),{\tilde{\mathbf{q}}}\left( {x,\xi } \right),{\mathbf{e}}\left( {x,\xi } \right) \) and \( {\mathbf{q}}\left( {x,\xi } \right) \) have been introduced [see Eqs. (20a, c), (23a, b)]. Then, Eq. (37) holds if the following identities are fulfilled:

$$ \int_{0}^{L} {\int_{0}^{L} {q_{x} \left( {x,\xi } \right)u\left( x \right){\text{d}}x{\text{d}}\xi } } = - \frac{1}{2}\int_{0}^{L} {\int_{0}^{L} {q_{x} \left( {x,\xi } \right)\eta \left( {x,\xi } \right){\text{d}}x{\text{d}}\xi } } ; $$
(38)
$$ \int_{0}^{L} {\int_{0}^{L} {q_{\varphi \varphi} \left( {x,\xi } \right)\varphi \left( x \right){\text{d}}x{\text{d}}\xi } } = - \frac{1}{2}\int_{0}^{L} {\int_{0}^{L} {q_{\varphi \varphi } \left( {x,\xi } \right)\theta \left( {x,\xi } \right){\text{d}}x{\text{d}}\xi } } ; $$
(39)
$$ \int_{0}^{L} {\int_{0}^{L} {\left[ {q_{z} \left( {x,\xi } \right)v\left( x \right) + q_{\varphi z} \left( {x,\xi } \right)\varphi \left( x \right)} \right]{\text{d}}x{\text{d}}\xi } } = - \frac{1}{2}\int_{0}^{L} {\int_{0}^{L} {q_{\varphi z} \left( {x,\xi } \right)\psi \left( {x,\xi } \right){\text{d}}x{\text{d}}\xi } } . $$
(40)

To prove Eq. (38), it is observed that due to the symmetry of g x (xξ), one may write:

$$ \int_{0}^{L} {\int_{0}^{L} {q_{x} \left( {x,\xi } \right)u\left( x \right){\text{d}}x{\text{d}}\xi } } = - \int_{0}^{L} {\int_{0}^{L} {q_{x} \left( {x,\xi } \right)u\left( \xi \right){\text{d}}x{\text{d}}\xi } } . $$
(41)

Adding to both sides of Eq. (41) the term \( \int_{0}^{L} {\int_{0}^{L} {q_{x} \left( {x,\xi } \right)u\left( x \right){\text{d}}x{\text{d}}\xi } } \), Eq. (38) can be obtained.

Equation (39) can be derived following a similar reasoning. Indeed, the symmetry of g φ (xξ) allows us to write:

$$ \int_{0}^{L} {\int_{0}^{L} {q_{\varphi \varphi} \left( {x,\xi } \right)\varphi \left( x \right){\text{dxd}}\xi } } = - \int_{0}^{L} {\int_{0}^{L} {q_{\varphi \varphi} \left( {x,\xi } \right)\varphi \left( \xi \right){\text{d}}x{\text{d}}\xi } } . $$
(42)

Then, adding to both sides of the previous equation the term \( \int_{0}^{L} {\int_{0}^{L} {q_{\varphi } \left( {x,\xi } \right)\varphi \left( x \right){\text{d}}x{\text{d}}\xi } } \), Eq. (39) is readily obtained.

Equation (40) can be split in the following two identities

$$ \int_{0}^{L} {\int_{0}^{L} {q_{z} \left( {x,\xi } \right)v\left( x \right){\text{d}}x{\text{d}}\xi } } = - \frac{1}{2}\int_{0}^{L} {\int_{0}^{L} {q_{\varphi z} \left( {x,\xi } \right)\left[ {2\left( {\frac{v\left( \xi \right) - v\left( x \right)}{\xi - x}} \right)} \right]{\text{d}}x{\text{d}}\xi } } ; $$
(43)
$$ \int_{0}^{L} {\int_{0}^{L} {q_{\varphi z} \left( {x,\xi } \right)\varphi \left( x \right){\text{d}}x{\text{d}}\xi } } = \frac{1}{2}\int_{0}^{L} {\int_{0}^{L} {q_{\varphi z} \left( {x,\xi } \right)\left[ {\varphi \left( x \right) +\, \varphi \left( \xi \right)} \right]{\text{d}}x{\text{d}}\xi } }. $$
(44)

To prove Eq. (43), let us first substitute in this equation the definitions (13b) and (14b) of q z (xξ) and q φz (xξ), respectively:

$$ \begin{aligned} \int_{0}^{L} {\int_{0}^{L} {2\frac{{\text{sgn}}\left( {\xi - x} \right)}{\left| {\xi - x}\right|} g_{z} \left( {x,\xi } \right)\psi \left( {x,\xi } \right)v\left( x \right){\text{d}}x{\text{d}}\xi } } \hfill \\ &=& - \frac{1}{2}\int_{0}^{L} {\int_{0}^{L} {g_{z} \left( {x,\xi } \right)\psi \left( {x,\xi } \right)\left[ {2\left( {\frac{v\left( \xi \right) - v\left( x \right)}{\xi - x}} \right)} \right]{\text{d}}x{\text{d}}\xi } }. \hfill \\ \end{aligned} $$
(45)

Due to the symmetry of the attenuation function g z (xξ), the following relationship holds:

$$ \begin{aligned} \int_{0}^{L} {\int_{0}^{L} {2\frac{{\text{sgn}}\left( {\xi - x} \right)}{\left| {\xi - x}\right|} g_{z} \left( {x,\xi } \right)\left[ {2\left( {\frac{v\left( \xi \right) - v\left( x \right)}{\xi - x}} \right)} \right]v\left( x \right){\text{d}}x{\text{d}}\xi } } \hfill \\ \quad= - \int_{0}^{L} {\int_{0}^{L} { 2\frac{{\text{sgn}}\left( {\xi - x} \right)}{\left| {\xi - x}\right|} g_{z} \left( {x,\xi } \right)\left[ {2\left( {\frac{v\left( \xi \right) - v\left( x \right)}{\xi - x}} \right)} \right]v\left( \xi \right) {\text{d}}x{\text{d}}\xi } }. \hfill \\ \end{aligned} $$
(46)

Then, adding to both sides of Eq. (46) the integral on the l.h.s. of this equation, the following identity is obtained:

$$ \begin{aligned} \int_{0}^{L} {\int_{0}^{L} { 2\frac{{\text{sgn}}\left( {\xi - x} \right)}{\left| {\xi - x}\right|} g_{z} \left( {x,\xi } \right)\left[ {2\left( {\frac{v\left( \xi \right) - v\left( x \right)}{\xi - x}} \right)} \right]v\left( x \right){\text{d}}x{\text{d}}\xi } } \hfill \\ \quad = - \frac{1}{2}\int_{0}^{L} {\int_{0}^{L} { g_{z} \left( {x,\xi } \right)\left[ {2\left( {\frac{v\left( \xi \right) - v\left( x \right)}{\xi - x}} \right)} \right]2 \left( {\frac{v\left( \xi \right) - v\left( x \right)}{\xi - x}} \right) {\text{d}}x{\text{d}}\xi } }. \hfill \\ \end{aligned} $$
(47)

where \( {\text{sgn}}(\xi - x)/|\xi - x| = 1/(\xi - x)\) has been set on the r.h.s. Furthermore, the symmetry of the function g z (xξ) allows us to write:

$$ \begin{aligned} \int_{0}^{L} {\int_{0}^{L} { 2\frac{{\text{sgn}}\left( {\xi - x} \right)}{\left| {\xi - x}\right|} g_{z} \left( {x,\xi } \right)\left[ {\varphi \left( x \right) + \varphi \left( \xi \right)} \right] v\left( x \right) {\text{d}}x{\text{d}}\xi } } \hfill \\ = - \int_{0}^{L} {\int_{0}^{L} { 2\frac{{\text{sgn}}\left( {\xi - x} \right)}{\left| {\xi - x}\right|} g_{z} \left( {x,\xi } \right)\left[ {\varphi \left( x \right) + \varphi \left( \xi \right)} \right]v\left( \xi \right) {\text{d}}x{\text{d}}\xi } }. \hfill \\ \end{aligned} $$
(48)

Then, adding to both sides of Eq. (48) the integral on the l.h.s., yields:

$$ \begin{aligned} \int_{0}^{L} {\int_{0}^{L} { 2\frac{{\text{sgn}}\left( {\xi - x} \right)}{\left| {\xi - x}\right|} g_{z} \left( {x,\xi } \right)\left[ {\varphi \left( x \right) + \varphi \left( \xi \right)} \right]v\left( x \right){\text{d}}x{\text{d}}\xi } } \hfill \\ = - \frac{1}{2}\int_{0}^{L} {\int_{0}^{L}{ g_{z} \left( {x,\xi } \right)\left[ {\varphi \left( x \right) + \varphi \left( \xi \right)} \right] 2\left( {\frac{v\left( \xi \right) - v\left( x \right)}{\xi - x}} \right) {\text{d}}x{\text{d}}\xi } } . \hfill \\ \end{aligned} $$
(49)

where, as in Eq. (47), \( {\text{sgn}}(\xi - x)/|\xi - x| = 1/(\xi - x)\) has been set on the r.h.s. Subtracting both sides of Eqs. (47) and (49) and recalling the definition (10) of ψ(xξ), Eq. (43) is obtained.

Finally, to prove Eq. (44), it is observed that due to the symmetry of g z (xξ), the following identity holds:

$$ \begin{aligned} \int_{0}^{L} {\int_{0}^{L} { g_{z} \left( {x,\xi } \right)\psi \left( {x,\xi } \right)\varphi \left( x \right){\text{d}}x{\text{d}}\xi } } \hfill \\ = \int_{0}^{L} {\int_{0}^{L} { g_{z} \left( {x,\xi } \right)\psi \left( {x,\xi } \right)\varphi \left( \xi \right){\text{d}}x{\text{d}}\xi } } . \hfill \\ \end{aligned} $$
(50)

Then, adding the l.h.s of Eq. (50) to both sides of the same equation and taking into account the definition (14b) of q φz (xξ), Eq. (44) is obtained.

Appendix 2

The purpose of this Appendix is to briefly illustrate the behavior of the proposed non-local beam model when β 1 < 1 is set in Eq. (4) for the local terms in Eqs. (32b, c). This is of interest to show, as discussed in the Conclusions, that the proposed non-local beam model is potentially capable of predicting non-local solutions that may be either stiffer or softer with respect to the classical local TM beam response.

A simply-supported beam is considered. Parameters and loading conditions are taken as in Sect. 5.1.1, while β 1 in Eq. (4) is given the following values: β 1 = 0.4; 0.6; 0.8. The dimensionless deflection v(x)/L versus the non-dimensional location x/L is reported in Fig. 13, for different values of the internal length l. For comparison, the classical local TM beam response, corresponding to β 1 = 1 and no long-range resultants in Eqs. (32b, c), is also reported.

Fig. 13
figure 13

Simply-supported beam: non-local and local dimensionless deflection for different β 1 in Eq. (4) and l (internal length)

For a given value β 1, it is seen that the non-local response may be either stiffer or softer than the classical local TM beam response, depending on the internal length l. This behavior can be explained considering that, for β 1 < 1, the solution provided by the local terms only in Eqs. (32b, c), i.e. without long-range resultants, is obviously softer than the classical local TM beam response [corresponding to β 1 = 1 and no long-range resultants in Eqs. (32b, c)]. The long-range resultants provide additional stiffness with respect to that of the local terms in Eqs. (32b, c), but such additional stiffness may not be enough to make the non-local response stiffer than the classical local TM beam response. In particular, Fig. 13 shows that the non-local response becomes progressively stiffer with increasing l, consistently with the fact a larger internal length l corresponds indeed to a larger amount of mutually interacting non-adjacent beam segments, with a consequent stiffening (see also comments on Figs. 4 and 5). The comments above explain also the fact that, in Fig. 13, a softer non-local response is obtained as parameter β 1 decreases, for a given internal length l.

The rotation response is in accordance with the deflection response in Fig. 13 and pertinent results are not reported for conciseness. Likewise, results for a cantilever beam subjected to a tip load agree with those for the simply-supported beam and are omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Failla, G., Sofi, A. & Zingales, M. A new displacement-based framework for non-local Timoshenko beams. Meccanica 50, 2103–2122 (2015). https://doi.org/10.1007/s11012-015-0141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0141-0

Keywords

Navigation