Skip to main content
Log in

Modelling and identification of structures with rate-independent linear damping

  • Advances in Dynamics, Stability and Control of Mechanical Systems
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present paper, a linear model for multi-degree-of-freedom systems with rate-independent damping is proposed to the purposes of dynamic response prediction and identification. A viscoelastic model with memory, equivalent to the ideal hysteretic model as for the energy dissipation properties, but causal and physically consistent in both the time and the frequency domain, is developed by adopting the Maxwell–Wiechert kernel function and by requiring the loss modulus to be substantially independent of frequency in a specified range of interest. The finite element model of the equivalent viscoelastic system is constructed and its equations of motion are shown to be uncoupled, in terms of modal coordinates, by the real-valued eigenvectors of the conservative system. An augmented state-space formulation, which encompasses, besides the customary displacements and velocites, a number of internal variables devoted to represent the viscoelastic memory, is then provided for the sake of system identification. Mechanical and modal properties of the equivalent viscoelastic model are finally illustrated by means of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Woodhouse J (1998) Linear damping models for structural vibration. J Sound Vib 215(3):547–569

    Article  ADS  MATH  Google Scholar 

  2. Lord Rayleigh J (1945) Theory of sound, 2nd edn. Dover Publications, Mineola

    Google Scholar 

  3. Bert C (1973) Material damping: an introductory review of mathematic measures and experimental technique. J Sound Vib 29(2):129–153

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Caughey T (1962) Vibration of dynamic systems with linear hysteretic damping (linear theory). In: Proceedings of the fourth U.S. national congress of applied mechanics, ASME

  5. Bishop R (1955) The treatment of damping forces in vibration theory. J R Aeronaut Soc 59:738–742

    Google Scholar 

  6. Lancaster P (1960) Free vibration and hysteretic damping. J R Aeronaut Soc 64:229

    Google Scholar 

  7. Reid T (1956) Free vibration and hysteretic damping. J R Aeronaut Soc 60:283

    Google Scholar 

  8. Myklestadt N (1952) The concept of complex damping. J Appl Mech ASME 19:284–286

    Google Scholar 

  9. Genta G (2009) Vibration dynamics and control. Springer, New York

    Book  MATH  Google Scholar 

  10. Crandall S (1991) The hysteretic damping model in vibration theory. Proc Inst Mech Eng C 205:23–28

    Article  Google Scholar 

  11. Crandall S (1997) Ideal hysteretic damping is noncausal. ZAMM Z Angew Math Mech 77:711

    Article  MATH  Google Scholar 

  12. Inaudi J, Kelly J (1995) Linear hysteretic model and the Hilbert transform. J Eng Mech ASCE 121:626–632

    Article  Google Scholar 

  13. Genta G, Amati N (2010) Hysteretic damping in rotordynamics: an equivalent formulation. J Sound Vib 329:4772–4784

    Article  ADS  Google Scholar 

  14. Makris N (1997) Causal hysteretic element. J Eng Mech ASCE 123(11):1209–1214

    Article  Google Scholar 

  15. Makris N (1997) Stiffness, flexibility, impedance, mobility and hidden delta function. J Eng Mech ASCE 123(11):1202–1208

    Article  Google Scholar 

  16. Makris N, Zhang J (2000) Time domain viscoelastic analysis of earth structures. Earthq Eng Struct Dyn 29:745–768

    Article  Google Scholar 

  17. Adhikari S, Woodhouse J (2001) Identification of damping: part 2, non-viscous damping. J Sound Vib 243(1):63–88

    Article  ADS  Google Scholar 

  18. Di Paola M, Pinnola F, Zingales M (2013) A discrete mechanical model of fractional hereditary materials. Meccanica 48:1573–1586

    Article  MATH  MathSciNet  Google Scholar 

  19. Biot M (1958) Linear thermodynamics and the mechanics of solids. In: Proceedings of the third U.S. national congress of applied mechanics, ASME

  20. Müllner H, Jäger A, Aigner E, Eberhardsteiner J (2008) Experimental identification of viscoelastic properties of rubber compounds by means of torsional rheometry. Meccanica 43:327–337

    Article  MATH  Google Scholar 

  21. Wiechert E (1893) Gesetze der elastischen nachwirkung für constante temperatur. Annalen der Physik 286(335–348):546–570

    Article  ADS  Google Scholar 

  22. Roylance D (2001) Engineering viscoelasticity. MIT, Cambridge

    Google Scholar 

  23. Wagner N, Adhikari S (2003) Symmetric state-space method for a class of nonviscously damped systems. AIAA J 41(5):951–956

    Article  ADS  Google Scholar 

  24. Adhikari S (2001) Classical normal modes in nonviscously damped linear systems. AIAA J 39(5):978–980

    Article  ADS  Google Scholar 

  25. Caughey TK, O’Kelly MEJ (1965) Classical normal modes in damped linear systems. J Appl Mech ASME 32:583–588

  26. Reggio A, De Angelis M (2013) State-space identification of non-viscously damped systems. In: Proceedings of XXI Congresso AIMETA—Associazione Italiana di Meccanica Teorica e Applicata, Torino

  27. Reggio A, De Angelis M, Betti R (2013) A state-space methodology to identify modal and physical parameters of non-viscously damped systems. Mech Syst Signal Proc 41:380–395

    Article  ADS  Google Scholar 

  28. Inaudi J, Kelly J (1995) Modal equations of linear structures with viscoelastic dampers. Earthq Eng Struct Dyn 24:145–151

    Article  Google Scholar 

  29. Palmeri A, Muscolino G (2012) A numerical method for the time-domain analysis of buildings equipped with viscoelastic dampers. Struct Control Health Monit 18(5):519–539

    Article  Google Scholar 

Download references

Acknowledgments

Anna Reggio is beneficiary of an AXA Research Post-Doctoral Grant, whose generous support is gratefully acknowledged. Maurizio De Angelis thanks the Italian Ministry of Education, University and Research (PRIN Grant 2010MBJK5B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Reggio.

Appendix

Appendix

It will be shown that, if a \(N\)-DoF proportionally damped viscoelastic system is modelled by adopting the Maxwell-Wiechert kernel function matrix (20), then (24) is necessary and sufficient condition for (25).

1.1 Sufficiency

The sufficiency of (24) is demonstrated by considering that, as a result of this assumption, the equations of motion of the \(N\)-DoF system can be uncoupled into a set of \(N\) modal equations of the kind (32). Complex stiffness in the \(j\)-th normal mode is therefore

$$\begin{aligned} K_j^*(s) = k_{0j}^* \bigg (1 + \sum _{l=1}^n \beta _l \frac{s}{s+\mu _l}\bigg ) \end{aligned}$$
(47)

in the Laplace domain and

$$\begin{aligned} K_j^*(\omega ) = k_{0j}^* \left[ 1 + \sum _{l=1}^n \beta _l \bigg ( \frac{\omega ^2}{\omega ^2 + \mu _l^2} + i\frac{\omega \mu _l}{\omega ^2 + \mu _l^2}\bigg )\right] \end{aligned}$$
(48)

in the frequency domain. The \(j\)-th modal loss factor \(\eta _j^*(\omega )\) is computed as the ratio between the imaginary and the real part of \(K_j^*(\omega )\)

$$\begin{aligned} \eta _j^*(\omega ) = \frac{{\mathfrak{I}}[K_j^*(\omega )]}{{\mathfrak{R}}[K_j^*(\omega )]} = \frac{k_{0j}^*\,\bigg (\sum _{l=1}^n \beta _l \frac{\omega \mu _l}{\omega ^2 + \mu _l^2}\bigg )}{k_{0j}^*\,\bigg (1 + \sum _{l=1}^n \beta _l \frac{\omega ^2}{\omega ^2 + \mu _l^2}\bigg )} \end{aligned}$$
(49)

By dropping the modal stiffness \(k_{0j}^*\), it is obtained

$$\begin{aligned} \eta _j^*(\omega ) = \frac{\sum _{l=1}^n \beta _l \frac{\omega \mu _l}{\omega ^2 + \mu _l^2}}{1 + \sum _{l=1}^n \beta _l \frac{\omega ^2}{\omega ^2 + \mu _l^2}} = \eta ^*(\omega ) \end{aligned}$$
(50)

The variation of each \(\eta _j^*\) versus frequency \(\omega \) is hence described by the same function \(\eta ^*(\omega )\).

1.2 Necessity

The general representation of the matrix of kernel functions \(\mathbf{G}(s)\) for a \(N\)-DoF proportionally damped viscoelastic system is given by

$$\begin{aligned} {\mathbf{G}}(s) = {\mathbf{M}} \sum _h ({\mathbf{M}}^{-1} {\mathbf{K}}_0)^h \chi _h(s) \end{aligned}$$
(51)

where \(\chi _h(s)\) is a complex-valued scalar function of the Laplace variable \(s\). This expression is equivalent, in the Laplace domain, to those reported by Inaudi and Kelly [28] in the frequency domain and by Palmeri and Muscolino [29] in the time domain. It follows the complex stiffness matrix

$$\begin{aligned} {\mathbf{K}}(s) = {\mathbf{K}}_0 + s\,\mathbf{G}(s) = {\mathbf{K}}_0 + s\,{\mathbf{M}}\sum _h ({\mathbf{M}}^{-1} {\mathbf{K}}_0)^h \chi _h(s) \end{aligned}$$
(52)

Accounting for the relationship

$$\begin{aligned} {\varvec{\phi}}_j^{\text{T}} {\mathbf{M}}({\mathbf{M}}^{-1}{\mathbf{K}}_0)^h {\varvec{\phi}}_k = m_j^*\,\omega _{0j}^{2h}\delta _{jk} \end{aligned}$$
(53)

that results from the orthogonality properties (30), the complex stiffness in the \(j\)-th normal mode is determined as

$$\begin{aligned} K_j^*(s) = {\varvec{\phi}}_{j}^{\text{T}} {\mathbf{K}}(s) {\varvec{\phi}}_j = k_{0j}^* + s\,m_j^*\sum _h \omega _{0j}^{2h}\, \chi _h(s) \end{aligned}$$
(54)

in the Laplace domain, and subsequently as

$$\begin{aligned} K_j^*(\omega ) = k_{0j}^* + i\omega \,m_j^*\sum _h \omega _{0j}^{2h}\, \chi _h(\omega ) \end{aligned}$$
(55)

in the frequency domain. Taking the ratio between the imaginary and the real part of \(K_j^*(\omega )\) yields the \(j\)-th modal loss factor

$$\begin{aligned} \eta _j^*(\omega )&= \frac{{\mathfrak{I}}[K_j^*(\omega )]}{{\mathfrak{R}}[K_j^*(\omega )]} \\&= \frac{\omega \,m_j^*\sum _h\omega _{0j}^{2h}\;{\mathfrak{R}}[\chi _h(\omega )]}{k_{0j}^* - \omega \,m_j^*\sum _h\omega _{0j}^{2h}\;{\mathfrak{I}}[\chi _h(\omega )]} \\&= \frac{\omega \sum _h \omega _{0j}^{2(h-1)}\,{\mathfrak{R}}[\chi _h(\omega )]}{1 - \omega \sum _h \omega _{0j}^{2(h-1)}\,{\mathfrak{I}}[\chi _h(\omega )]} \end{aligned}$$
(56)

In order for \(\eta _j^*(\omega )\) to be independent of modal frequencies \(\omega _{0j}\), it must hold

$$\begin{aligned} {\mathfrak{R}}[\chi _h(\omega )] = {\mathfrak{I}}[\chi _h(\omega )] = 0 \qquad \forall \; h \ne 1 \end{aligned}$$
(57)

from which it follows

$$\begin{aligned} \eta _j^*(\omega ) = \frac{\omega \,{\mathfrak{R}}[\chi _1(\omega )]}{1 - \omega \,{\mathfrak{I}}[\chi _1(\omega )]} = \eta ^*(\omega ) \end{aligned}$$
(58)

where \(\eta^*(\omega)\) is a function of frequency \(\omega \) independent of modal quantities.

By substituting into (51) the expression (22) of \({\mathbf{G}}(s)\) prescribed by the Maxwell-Wiechert model and taking into account (57) yields

$$\begin{aligned} \sum _{l=1}^n {\mathbf{C}}_l \mu _l \frac{1}{s + \mu _l} = {\mathbf{K}}_0 \chi _1(s) \end{aligned}$$
(59)

By writing \(\chi _1(s) = \sum _{l=1}^n \chi _{1l}(s)\) in (59), it follows

$$\begin{aligned} {\mathbf{C}}_l \mu _l \frac{1}{s + \mu _l} = {\mathbf{K}}_0 \chi _{1l}(s), \qquad l = 1,\,2,\, \ldots ,\, n \end{aligned}$$
(60)

from which it is obtained

$$\begin{aligned} {\mathbf{C}}_l = {\mathbf{K}}_0 \frac{s + \mu _l}{\mu _l} \chi _{1l}(s) = {\mathbf{K}}_0 \frac{\beta _l}{\mu _l} \end{aligned}$$
(61)

as was to be shown. In  (61), \(\beta _l = (s + \mu _l)\chi _{1l}(s) = {\text{cost}}\) since matrices \({\mathbf{C}}_l\) and \({\mathbf{K}}_0\) are constant with Laplace variable \(s\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reggio, A., De Angelis, M. Modelling and identification of structures with rate-independent linear damping. Meccanica 50, 617–632 (2015). https://doi.org/10.1007/s11012-014-0046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0046-3

Keywords

Navigation