Skip to main content
Log in

Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The buckling behavior of perfect and defective double-walled carbon nanotubes (DWCNTs) under axial compressive, torsional and bending loadings is investigated using a structural mechanics model. The effects of van der Waals (vdW) forces are further modeled using a nonlinear spring element.

Critical buckling loads, critical buckling moments and the effects of vacancy defects were studied for armchair nanotubes with various aspect ratios. The results show that vacancy defects greatly reduce the critical buckling load of DWCNTs. The density of defects plays an important role in buckling of DWCNTs. The results of this numerical model are in good agreement with their comparable existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  ADS  Google Scholar 

  2. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Academic Press, San Diego

    Google Scholar 

  3. Che J, Cagin T, Goddard WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11(2):65–69

    Article  ADS  Google Scholar 

  4. Nardelli MB, Fattebert JL, Orlikowski D, Roland C, Zhao Q, Bernholc J (2000) Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon 38(11):1703–1711

    Article  Google Scholar 

  5. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  Google Scholar 

  6. Pantano A, Parks MD, Boyce MC (2003) Nonlinear structural mechanics based modeling of carbon nanotube deformation. Phys Rev Lett 91(14):145504

    Article  ADS  Google Scholar 

  7. Pantano A, Parks MD, Boyce MC (2004) Mechanics of deformation of single-and multi-wall carbon nanotubes. J Mech Phys Solids 52(4):789–821

    Article  ADS  MATH  Google Scholar 

  8. Arroyo M, Belytschko T (2003) Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys Rev Lett 91(21):215505

    Article  ADS  Google Scholar 

  9. Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys Rev B 69(11):115415, 12 pp

    Article  ADS  Google Scholar 

  10. Arroyo M, Belytschko T (2005) Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40(4):455–469

    Article  MathSciNet  MATH  Google Scholar 

  11. Yao X, Han Q (2007) Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field. Compos Sci Technol 67(1):125–134

    Article  Google Scholar 

  12. Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63:1517–1524

    Article  Google Scholar 

  13. Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Composites. Part B 36(5):468–477

    Article  Google Scholar 

  14. Hu N, Fukunaga H, Lu C, Kameyama M, Yan B (2005) Prediction of elastic properties of carbon nanotube reinforced composites. Proc R Soc A, Math Phys Eng Sci 461(2058):1685–1710

    Article  ADS  Google Scholar 

  15. Kalamkarov AL, Georgiades AV, Rokkam SK, Veedu VP, Ghasemi-Nejhad MN (2006) Analytical and numerical techniques to predict carbon nanotubes properties. Int J Solids Struct 43(22):6832–6854

    Article  MATH  Google Scholar 

  16. Wang Q (2005) Effect of the van der Waals interaction on analysis of double-walled carbon nanotubes. Int J Struct Stab Dyn 5(3):457–474

    Article  Google Scholar 

  17. Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45(1):43–51

    Article  MATH  Google Scholar 

  18. Meo M, Rossi M (2006) Tensile failure prediction of single wall carbon nanotube. Eng Fract Mech 73(17):2589–2599

    Article  Google Scholar 

  19. Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42:39–45

    Article  Google Scholar 

  20. Wang CM, Ma YQ, Zhang YY, Ang KK (2006) Buckling of double-walled carbon nanotubes modeled by solid shell elements. J Appl Phys 99(11):114317

    Article  ADS  Google Scholar 

  21. Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Constitutive modeling of nanotube-reinforced polymer composites. NASA/TM, 211454

  22. Zhang YY, Wang CM, Tan VBC (2006) Buckling of multiwalled carbon nanotubes using Timoshenko beam theory. J Eng Mech 132(9):952–958

    Google Scholar 

  23. Elishakoff I, Pentaras D, Dujat K, Versaci C, Muscolino G et al. (2012) Carbon nanotubes and nanosensors: vibrations, buckling and ballistic impact (ISTE). Wiley, New York

    Book  Google Scholar 

  24. Sun CQ, Liu KX, Hong YS (2012) Axisymmetric compressive buckling of multi-walled carbon nanotubes under different boundary conditions. Acta Mech Sin 28:83–90

    Article  MathSciNet  ADS  Google Scholar 

  25. Sears A, Batra RC (2006) Buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 73(8):805410, 12 pp

    Article  Google Scholar 

  26. Liew KM, Wong CH, He XQ, Tan MJ, Meguid SA (2004) Nanomechanics of single and multiwalled carbon nanotubes. Phys Rev B 69(11):115429

    Article  ADS  Google Scholar 

  27. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458–9471

    Article  ADS  Google Scholar 

  28. Lu JM, Hwang CC, Kuo QY, Wang YC (2008) Mechanical buckling of multi-walled carbon nanotubes: the effects of slenderness ratio. Physica E 40(5):1305–1308

    Article  ADS  Google Scholar 

  29. Zhang YY, Tan VBC, Wang CM (2007) Effect of strain rate on the buckling behavior of single-and double-walled carbon nanotubes. Carbon 45(3):514–523

    Article  Google Scholar 

  30. Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60. Chem Phys Lett 128(5):501–503

    Article  ADS  Google Scholar 

  31. Xin H, Han Q, Yao XH (2007) Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon 45(13):2486–2495

    Article  Google Scholar 

  32. Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K, Kaski K (2005) Erratum: mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B 71(16):169906

    Article  ADS  Google Scholar 

  33. Xin H, Han Q, Yao XH (2008) Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos Sci Technol 68(7):1809–1819

    Google Scholar 

  34. Lu YJ, Wang X (2006) Combined torsional buckling of multi-walled carbon nanotubes. J Phys D, Appl Phys 39(15):3380–3387

    Article  ADS  Google Scholar 

  35. Wang CM, Tay ZY, Chowdhuary ANR, Duan WH, Zhang YY, Silvestre N (2011) Examination of cylindrical shell theories for buckling of carbon nanotubes. Int J Struct Stab Dyn 11(06):1035–1058

    Article  Google Scholar 

  36. Wang Q, Quek ST, Varadan VK (2007) Torsional buckling of carbon nanotubes. Phys Lett A 367(1):135–139

    Article  ADS  Google Scholar 

  37. Yao X, Han Q (2008) A continuum mechanics nonlinear postbuckling analysis for single-walled carbon nanotubes under torque. Eur J Mech A, Solids 27(5):796–807

    Article  MathSciNet  MATH  Google Scholar 

  38. Yao X, Han Q (2008) Torsional buckling and postbuckling equilibrium path of double-walled carbon nanotubes. Compos Sci Technol 68(1):113–120

    Article  Google Scholar 

  39. Wang Q (2008) Modeling of the mechanical instability of carbon nanotubes. Carbon 46(2):1159–1174

    Google Scholar 

  40. Wang X, Wang XY, Xiao J (2005) A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformations. Compos Struct 69(3):315–321

    Article  MathSciNet  Google Scholar 

  41. Yao X, Han Q, Xin H (2008) Bending buckling behaviors of single-and multi-walled carbon nanotubes. Compos Mater Sci 43(4):579–590

    Article  Google Scholar 

  42. Parvaneh V, Shariati M, Majd Sabeti AM (2009) Investigation of vacancy defects effects on the buckling behavior of SWCNTs via a structural mechanics approach. Eur J Mech A, Solids 28(6):1072–1078

    Article  MATH  Google Scholar 

  43. Cornell WD, Cieplak P, Bayly CI et al. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197

    Article  Google Scholar 

  44. Parvaneh V, Shariati M (2011) Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech 216(1):281–289

    Article  MATH  Google Scholar 

  45. Parvaneh V, Shariati M, Torabi H (2011) Frequency analysis of perfect and defective SWCNTs. Compos Mater Sci 50(7):2051–2056

    Article  Google Scholar 

  46. Parvaneh V, Shariati M, Torabi H, Majd Sabeti AM (2011) Influence of boundary conditions and defects on the buckling behavior of SWCNTs via a structural mechanics approach. J Nanomater 16:297902

    Google Scholar 

  47. Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley, New York

    Google Scholar 

  48. Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2001) Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B 105(41):9980–9987

    Article  Google Scholar 

  49. Li C, Chou TW (2004) Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech Mater 36(11):1047–1055

    Article  Google Scholar 

  50. Lashkari Zadeh A, Shariati M, Torabi H (2012) Buckling analysis of carbon nanotube bundles under axial compressive, bending and torsional loadings via a structural mechanics model. J Phys Chem Solids 73(11):1282–1289

    Article  ADS  Google Scholar 

  51. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975

    Article  Google Scholar 

  52. Salvetat JP, Briggs AD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82(5):944–947

    Article  ADS  Google Scholar 

  53. Zhang YY, Wang CM, Duan WH, Xiang Y, Zong Z (2009) Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20:395707–395715

    Article  ADS  Google Scholar 

  54. He XQ, Kitipornchai S, Liew KM (2005) Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J Mech Phys Solids 53(2):303–326

    Article  ADS  MATH  Google Scholar 

  55. Liew KM, He XQ, Wong CH (2004) On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater 52:2521–2527

    Article  Google Scholar 

  56. Soong SH (2009) Torsional buckling of double-walled carbon nanotubes. In: 14 NUROP congress, National University of Singapore Kent Ridge, Singapore

  57. Yang SH, Wei ZX (2009) Molecular dynamics study of effects of sp3 interwall bridging upon torsional behavior of double-walled carbon nanotube. Phys Lett A 373(6):682–685

    Article  MathSciNet  ADS  Google Scholar 

  58. Brazier LG (1927) On the flexure of thin cylindrical shells and other “thin” sections. Proc R Soc Lond Ser A 116(773):104–114

    Article  ADS  MATH  Google Scholar 

  59. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514

    Article  ADS  Google Scholar 

  60. Parvaneh V, Shariati M, Torabi H (2012) Bending buckling behavior of perfect and defective single-walled carbon nanotubes via a structural mechanics model. Acta Mech 223(11):2369–2378

    Article  MathSciNet  MATH  Google Scholar 

  61. Cao G, Chen X (2006) Buckling behaviour of single-walled carbon nanotubes and a targeted molecular mechanics approach. Phys Rev B 74(16):165422

    Article  ADS  Google Scholar 

  62. Silvestre N (2008) Length dependence of critical measures in single-walled carbon nanotubes. Int J Solids Struct 45(18):4902–4920

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Torabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torabi, H., Shariati, M., Sedaghat, E. et al. Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach. Meccanica 48, 1959–1974 (2013). https://doi.org/10.1007/s11012-013-9715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9715-x

Keywords

Navigation