Skip to main content
Log in

Axisymmetric compressive buckling of multi-walled carbon nanotubes under different boundary conditions

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The paper studies the axisymmetric compressive buckling behavior of multi-walled carbon nanotubes (MWNTs) under different boundary conditions based on continuum mechanics model. A buckling condition is derived for determining the critical buckling load and associated buckling mode of MWNTs, and numerical results are worked out for MWNTs with different aspect ratios under fixed and simply supported boundary conditions. It is shown that the critical buckling load of MWNTs is insensitive to boundary conditions, except for nanotubes with smaller radii and very small aspect ratio. The associated buckling modes for different layers ofMWNTs are in-phase, and the buckling displacement ratios for different layers are independent of the boundary conditions and the length of MWNTs. Moreover, for simply supported boundary conditions, the critical buckling load is compared with the corresponding one for axial compressive buckling, which indicates that the critical buckling load for axial compressive buckling can be well approximated by the corresponding one for axisymmetric compressive buckling. In particular, for axial compressive buckling of double-walled carbon nanotubes, an analytical expression is given for approximating the critical buckling load. The present investigation may be of some help in further understanding the mechanical properties of MWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, P., Huang, Y., Geubelle, P.H., et al.: On the continuum modeling of carbon nanotubes. Acta Mech. Sin. 18(5), 528–536 (2002)

    Article  Google Scholar 

  2. Guo, W.L., Guo, Y.F.: The coupled effects of mechanical deformation and electronic properties in carbon nanotubes. Acta Mech. Sin. 20(2), 192–198 (2004)

    Article  Google Scholar 

  3. Waters, J.F., Guduru, P.R., Jouzi, M., et al.: Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Appl. Phys. Lett. 87, 103109 (2005)

    Article  Google Scholar 

  4. Cao, G.X., Chen, X.: Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method. Phys. Rev. B 73, 155435 (2006)

    Article  Google Scholar 

  5. Wang, Y., Fang, D.N., Soh, A.K., et al.: A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes. Acta Mech. Sin. 23(6), 663–671 (2007)

    Article  MATH  Google Scholar 

  6. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instability beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  7. Ru, C.Q.: Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J. Appl. Phys. 87, 7227–7231 (2000)

    Article  Google Scholar 

  8. Ru, C.Q.: Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. J. Mech. Phys. Solids 49, 1265–1279 (2001)

    Article  MATH  Google Scholar 

  9. Han, Q., Lu, G.X.: Torsional buckling of a double-walled carbon nanotube embedded in an elastic medium. Eur. J. Mech. A Solids 22, 875–883 (2003)

    Article  MATH  Google Scholar 

  10. Liu, J.Z., Zheng, Q.S., Jiang, Q.: Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Phys. Rev. B 67, 075414 (2003)

    Article  Google Scholar 

  11. Wang, C.Y., Ru, C.Q., Mioduchowski, A.: Elastic buckling of multiwall carbon nanotubes under high pressure. J. Nanosci. Nanotechnol. 3, 199–208 (2003)

    Article  Google Scholar 

  12. Wang, C.Y., Ru, C.Q., Mioduchowski, A.: Axially compressed buckling of pressured multiwall carbon nanotubes. Int. J. Solids Struct. 40, 3893–3911 (2003)

    Article  MATH  Google Scholar 

  13. Tang, D.S., Bao, Z.X., Wang, L.J., et al.: The electrical behavior of carbon nanotubes under high pressure. J. Phys. Chem. Solids 61, 1175–1178 (2000)

    Article  Google Scholar 

  14. Ni, B., Sinnott, S.B., Mikulski, P.T., et al.: Compression of carbon nanotubes filled with C 60, CH4, or Ne: predictions from molecular dynamics simulations. Phys. Rev. Lett. 88, 205505 (2002)

    Article  Google Scholar 

  15. Wang, G.W., Zhang, Y., Zhao, Y.P., et al.: Pull-in stability study of nanotubes under van der Waals forces influence. J. Micromech. Microeng. 14, 1119–1125 (2004)

    Article  Google Scholar 

  16. Wang, L.F., Zheng, Q.S., Liu, J.Z., et al.: Size dependence of the thin-shell model for carbon nanotubes. Phys. Rev. Lett. 95, 105501-1–105501-4 (2005)

    Google Scholar 

  17. Akita, S., Nishio, M., Nakayama, Y.: Buckling of multiwall carbon nanotubes under axial compression. Jpn. J. Appl. Phys. 45, 5586–5589 (2006)

    Article  Google Scholar 

  18. Xie, G.Q., Han, X., Liu, G.R., et al.: Effect of small size-scale on the radial buckling pressure of a simply supported multiwalled carbon nanotube. Smart Mater. Struct. 15, 1143–1149 (2006)

    Article  Google Scholar 

  19. Sun, C., Liu, K., Lu, G.: Dynamic torsional buckling of multiwalled carbon nanotubes embedded in an elastic medium. Acta Mech. Sin. 24, 541–547 (2008)

    Article  Google Scholar 

  20. Sun, C., Liu, K.: Dynamic column buckling of multi-walled carbon nanotubes under axial impact load. Solid State Commun. 149, 429–433 (2009)

    Article  Google Scholar 

  21. Yakobson, B.I., Smalley, R.E.: Fullerene nanotubes: C-1000000 and beyond. Am. Sci. 85(4), 324–337 (1997)

    Google Scholar 

  22. Harik, W.M.: Ranges of applicability for the continuum-beam model in the constitutive analysis of carbon-nanotubes and nanorods. Solid State Commun. 120, 331–335 (2001)

    Article  Google Scholar 

  23. Wang, C.Y., Ru, C.Q., Mioduchowski, A.: Applicability and limitations of simplified elastic shell equations for carbon nanotubes. ASME J. Appl. Mech. 71, 622–631 (2004)

    Article  MATH  Google Scholar 

  24. Peng, J., Wu, J., Hwang, K.C., et al.: Can a single-wall carbon nanotube be modeled as a thin shell? J. Mech. Phys. Solids 56, 2213–2224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, Q., Lu, G.X., Dai, L.M.: Bending instability of an embedded double-walled carbon nanotube based on Winkler and van der Waals models. Compos. Sci. Technol. 65, 1337–1346 (2005)

    Article  Google Scholar 

  26. Shen, H.S., Zhang, C.L.: Postbuckling of double-walled carbon nanotubes with temperature dependent properties and initial defects under combined axial and radial mechanical loads. Int. J. Solids Struct. 44, 1461–1487 (2007)

    Article  MATH  Google Scholar 

  27. Sun, C., Liu, K.: Combined torsional buckling of multi-walled carbon nanotubes coupling with radial pressures. J. Phys. D: Appl. Phys. 40, 4027–4033 (2007)

    Article  Google Scholar 

  28. Saito, R., Matsuo, R., Kimura, T., et al.: Anomalous potential barrier of double-wall carbon nanotube. Chem. Phys. Lett. 348, 187–193 (2001)

    Article  Google Scholar 

  29. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability in Chinese. Science Press, Beijing (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Qi Sun.

Additional information

The project was supported by the National Natural Science Foundation of China (10721202, 10732010, 10972010 and 11028206).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, CQ., Liu, KX. & Hong, YS. Axisymmetric compressive buckling of multi-walled carbon nanotubes under different boundary conditions. Acta Mech Sin 28, 83–90 (2012). https://doi.org/10.1007/s10409-011-0546-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0546-5

Keywords

Navigation