Skip to main content
Log in

Effect of defects and loading on prediction of Young’s modulus of SWCNTs

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the influence of various vacancy and Stone-Wales defects on the Young’s modulus of single-walled carbon nanotubes is investigated via a structural model. Dispersion in experimental results is the motivation for this work. Our results show that the type of method used (loading and boundary condition) for the prediction of the Young’s modulus of SWCNTs is very important for the results. The effect of different types of defects on the Young’s modulus is also studied for zigzag and armchair nanotubes with various aspect ratios (length/diameter). A comparison of our results with those of experimental methods indicates that for the exact prediction of the Young’s modulus of SWCNTs we need to apply the correct conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubules of graphitics carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Nardelli M.B., Fattebert J.L., Orlikowski D., Roland C., Zhao Q., Bernholc J.: Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon 38, 1703–1711 (2003)

    Article  Google Scholar 

  3. Iijima S., Ichlhashi T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    Article  Google Scholar 

  4. Wong E.W., Sheehan P.E., Lieber C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  5. Krishnan A., Dujardin E., Ebbesen T.W., Yianilos P.N., Treacy M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)

    Article  Google Scholar 

  6. Salvetat J., Bonard J., Thomson N.H., Kulik A.J., Forro L., Benoit W., Zuppiroli L.: Mechanical properties of carbon nanotubes. Appl. Phys. A 69, 255–260 (1999)

    Article  Google Scholar 

  7. Tombler T.W., Zhou C., Alexseyev L., Kong J., Dai H., Liu L., Jayanthi C.S., Tang M., Wu S.: Reversible electromechanical characteristics of carbon nanotbues under local-probe manipulation. Nature 405, 769–772 (2000)

    Article  Google Scholar 

  8. Yu M., Files B., Arepalli S., Ruoff R.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  Google Scholar 

  9. Li C.Y., Chou T.S.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  10. Tserpes K.I., Papanikos P.: Finite element modeling of single-walled carbon nanotubes. Compos. Part B. 36, 468–477 (2005)

    Article  Google Scholar 

  11. Hu N., Fukunaga H., Lu C., Kameyama M., Yan B.: Prediction of elastic properties of carbon nanotube-reinforced composites. Series A. Math. Phys. Sci. 461, 1685–1710 (2005)

    Article  Google Scholar 

  12. Kalamkarov A.L., Georgiades A.V., Rokkam S.K., Veedu V.P., Ghasemi-Nejhad M.N.: Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. solids struct. 43, 6832–6854 (2006)

    Article  MATH  Google Scholar 

  13. Meo M., Rossi M.: Tensile failure prediction of single wall carbon nanotube. Eng. Fract. Mech. 73, 2589–2599 (2006)

    Article  Google Scholar 

  14. Natsuki T., Tantrakarn K., Endo M.: Prediction of elastic properties of single-walled carbon nanotubes. Carbon 42, 39–45 (2003)

    Article  Google Scholar 

  15. Odegard, G.M., Gates, T.S., Nicholson, L.M., Wise, K.E.: Equivalent-continuum modeling with application to carbon nanotubes. NASA/TM, 211454 (2002)

  16. Yakobson B.I., Brabec C.J., Bernholc J.: Nanomechanics of carbon tubes: instability beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  17. Cornwell C.F., Wille L.T.: Elastic properties of single-walled carbon nanotubes in compression. Solid State Commun. 101, 555–558 (1997)

    Article  Google Scholar 

  18. Lu J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1998)

    Article  Google Scholar 

  19. Yao N., Lordi V.: Young’s modulus of single-walled carbon nanotubes. J. Appl. Phys. 84, 1939–1943 (1998)

    Article  Google Scholar 

  20. Goze C., Vaccarini L., Henrard L., Bernier P., Hernandez E., Rubio A.: Elastic and mechanical properties of carbon nanotubes. Synth. Metals. 103, 2500–2501 (1999)

    Article  Google Scholar 

  21. Lier G.V., Alsenoy C.V., Doren V.V., Geerlings P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and grapheme. Chem. Phys. Lett. 326, 181–185 (2000)

    Article  Google Scholar 

  22. Kudin K.N., Scuseria G.E., Yakobson B.I.: 2F, BN and C nanoshell elasticity from ab initio computations. Phys. Rev. B. 64, 235406 (2001)

    Article  Google Scholar 

  23. Belytschko T., Xiao S.P., Schatz G.C., Ruoff R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B. 65, 235–430 (2002)

    Article  Google Scholar 

  24. Troya D., Mielke S.L., Schatz G.C.: Carbon nanotube fracture—differences between quantum mechanical mechanisms and those of empirical potentials. Chem. Phys. Lett. 382, 133–141 (2003)

    Article  Google Scholar 

  25. Shen L., Li J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B. 69, 045414 (2004)

    Article  Google Scholar 

  26. Xiao J.R., Gama B.A., Gillespie J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)

    Article  MATH  Google Scholar 

  27. Huang Y., Wu J., Hwang K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B. 74, 245413–245419 (2006)

    Article  Google Scholar 

  28. Parvaneh V., Shariati M., Majd Sabeti A.M.: Investigation of defects effects on the buckling behavior of SWCNTs via a structural mechanics approach. Eur. J. Mech. A/Solids 28, 1072–1078 (2009)

    Article  MATH  Google Scholar 

  29. Rappe A.K., Casewit C.J., Colwell K.S. et al.: UFF, A full periodic-table force-field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  30. Stone A.J., Wales D.J.: Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vali Parvaneh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvaneh, V., Shariati, M. Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech 216, 281–289 (2011). https://doi.org/10.1007/s00707-010-0373-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0373-y

Keywords

Navigation