Skip to main content
Log in

Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present paper deals with the hydrodynamics of a porous sphere placed in an arbitrary oscillatory Stokes flow. Unsteady Stokes equation is used for the flow outside the porous sphere and Brinkman equation is used for the flow inside the porous sphere. Corresponding Faxén’s law for drag and torque is derived and compared with few existing results in some special cases. Examples like uniform flow, oscillatory shear flow and oscillating Stokeslet are discussed. Also, translational oscillation of a weakly permeable sphere is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of the porous sphere [m]

k :

permeability of the porous sphere [m2]

r :

radial distance

v e :

oscillatory velocity external to the porous sphere [m/s]

p e :

oscillatory pressure external to the porous sphere [N/m2]

V e :

amplitude of the oscillatory velocity external to the porous sphere [m/s]

P e :

amplitude of the oscillatory pressure external to the porous sphere [N/m2]

V i :

velocity internal to the porous sphere [m/s]

P i :

pressure internal to the porous sphere [N/m2]

p 0 :

constant [N/m2]

U :

magnitude of the far field uniform velocity [m/s]

Da :

Darcy number

V 0 :

basic velocity [m/s]

V :

velocity due to the disturbance [m/s]

A, B :

scalars

f n :

modified spherical Bessel function of first kind

g n :

modified spherical Bessel function of second kind

S n , T n :

spherical harmonics

\(P_{n}^{m}\) :

associated Legendre polynomial

\(|V_{\theta}^{i}|\) :

magnitude of the internal tangential velocity

θ :

inclination

φ :

azimuth angle

α :

slip coefficient

λ :

dimensionless parameter

ω :

frequency of oscillation [s−1]

ϖ :

dimensionless frequency of oscillation

ρ :

density of the fluid [kg/m3]

μ :

dynamic viscosity [kg/m−1/s−1]

ν :

kinematic viscosity [m2/s]

e :

external to the porous sphere

i :

internal to the porous sphere

References

  1. Higdon JJL, Kojima M (1981) On the calculation of Stokes flow past porous particles. Int J Multiph Flow 7(6):719–727

    Article  MATH  Google Scholar 

  2. Yu Q, Kaloni PN (1988) A cartesian-tensor solution of the Brinkman equation. J Eng Math 22:177–188

    Article  MATH  Google Scholar 

  3. Keh HJ, Chen SH (1996) The motion of a slip spherical particle in an arbitrary Stokes flow. Eur J Mech B, Fluids 15:791–807

    MATH  Google Scholar 

  4. Hetsroni G, Haber S (1970) The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol Acta 9:488–496

    Article  MATH  Google Scholar 

  5. Hetsroni G, Wacholder E, Haber S (1971) The hydrodynamic resistance of a fluid sphere submerged in Stokes flows. Z Angew Math Mech 51:45–50

    Article  MATH  Google Scholar 

  6. Rallison JM (1978) Note on the Faxén relations for a particle in Stokes flow. J Fluid Mech 88(3):529–533

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Masliyah JH, Neale G, Malysa K, van de Ven TGM (1987) Creeping flow over a composite sphere: solid core with porous shell. Chem Eng Sci 42:245–253

    Article  Google Scholar 

  8. Chapman AM, Higdon JJL (1992) Oscillatory Stokes flow in periodic porous media. Phys Fluids A, Fluid Dyn 4:2099–2116

    Article  ADS  Google Scholar 

  9. Looker JR, Carnie SL (2004) The hydrodynamics of an oscillating porous sphere. Phys Fluids 16:62–72

    Article  ADS  Google Scholar 

  10. Poliak B (2000) Modelling electrokinetic behaviour and forces in colloidal systems. PhD thesis, Department of Mathematics and Statistics, The University of Melbourne

  11. Curcio S (2005) A theoretical and experimental analysis of membrane bioreactors behavior in unsteady—state conditions. Excerpt from the proc COMSOL multiphysics user’s conference, Stockholm

  12. Dragon C, Grotberg J (1991) Oscillatory flow and mass-transport in a flexible tube. J Fluid Mech 231:135–155

    Article  ADS  MATH  Google Scholar 

  13. Dursting J, Sheridan J, Hourigan K (2006) A fluid dynamic approach to bioreactor design for cell and tissue culture. Biotechnol Bioeng 94:1197–1208

    Google Scholar 

  14. Prakash J, Raja Sekhar GP, De S, Böhm M (2010) A criterion to avoid starvation zones for convection–diffusion–reaction problem inside a porous biological pellet under oscillatory flow. Int J Eng Sci 48:693–707

    Article  MATH  Google Scholar 

  15. Prakash J, Raja Sekhar GP, De S (2011) Dirichlet problem for convection–diffusion–reaction inside a permeable cylindrical porous pellet. Int J Eng Sci 49:606–624

    Article  MATH  Google Scholar 

  16. Ni X, Mackley MR, Harvey AP, Stonestreet P, Baird MHI, Rama Rao NV (2003) Mixing through oscillations and pulsations—a guide to achieving process enhancements in the chemical and process industries. Chem Eng Res Des 81:373–383

    Article  Google Scholar 

  17. Crittenden BD, Lau A, Brinkmann T, Field RW (2005) Oscillatory flow and axial dispersion in packed beds of spheres. Chem Eng Sci 60:111–122

    Article  Google Scholar 

  18. Umnova O, Attenborough K, Li KM (2000) Cell model calculations of dynamic drag parameters in packings of spheres. J Acoust Soc Am 107:3113–3119

    Article  ADS  Google Scholar 

  19. Vainshtein P, Shapiro M (2009) Forces on a porous particle in an oscillating flow. J Colloid Interface Sci 330:149–155

    Article  Google Scholar 

  20. Padmavathi BS, Amaranath T, Nigam SD (1993) Stokes flow past a porous sphere using Brinkman’s model. Z Angew Math Phys 44:929–939

    Article  MathSciNet  MATH  Google Scholar 

  21. Raja Sekhar GP, Padmavathi BS, Amaranath T (1997) Complete general solution of the Brinkman equation. Z Angew Math Mech 77:555–556

    Article  MathSciNet  MATH  Google Scholar 

  22. Saffman PG (1971) On the boundary condition at the surface of a porous medium. Stud Appl Math 50:93–101

    MATH  Google Scholar 

  23. Raja Sekhar GP, Amaranath T (1996) Stokes flow past a porous sphere with an impermeable core. Mech Res Commun 23:449–460

    Article  MATH  Google Scholar 

  24. Neale G, Epstein N (1973) Creeping flow relative to permeable spheres. Chem Eng Sci 28:1864–1875

    Google Scholar 

  25. Davis RH, Stone HA (1993) Flow through beds of porous particles. Chem Eng Sci 23:3993–4005

    Google Scholar 

  26. Chen SB, Ye X (2000) Faxen’s laws of a composite sphere under creeping flow conditions. J Colloid Interface Sci 221:50–57

    Article  Google Scholar 

  27. Filippov AN, Vasin SI, Starov VM (2006) Mathematical modeling of the hydrodynamic permeability of a membrane built up from porous particles with a permeable shell. Colloids Surf A 282–283:272–278

    Article  Google Scholar 

  28. Vasin SI, Filippov AN, Starov VM (2008) Hydrodynamic permeability of membranes built up by particles covered by porous shells: Cell models. Adv Colloid Interface Sci 139:83–96

    Article  Google Scholar 

  29. Cichocki B, Felderhof BU (2009) Hydrodynamic friction coefficients of coated spherical particles. J Chem Phys 130:164712

    Article  ADS  Google Scholar 

  30. Abade GC, Cichocki B, Ekiel-Jeżewska ML, Nägele G, Wajnryb E (2010) Short-time dynamics of permeable particles in concentrated suspensions. J Chem Phys 132:014503

    Article  ADS  Google Scholar 

  31. Nield DA (2009) The Beavers–Joseph boundary condition and related matters: A historical and critical note. Transp Porous Media 78:537–540

    Article  Google Scholar 

  32. Ochoa-Tapia JA, Whitaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid-Theoretical development. Int J Heat Mass Transf 38:2635–2646

    Article  MATH  Google Scholar 

  33. Ochoa-Tapia JA, Whitaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid-Comparison with experiment. Int J Heat Mass Transf 38:2647–2655

    Article  Google Scholar 

  34. Masliyah JH, Neale G, Malysa K, Van De Ven TGM (1987) Creeping flow over a composite sphere: solid core with porous shell. Chem Eng Sci 42:245–253

    Article  Google Scholar 

  35. Raja Sekhar GP (1997) Complete general solutions of Stokes and Brinkman equations and their applications. PhD thesis, University of Hyderabad, India

  36. Pozrikidis C (1992) Boundary integral and singularity methods for linearized flow. Cambridge Univ Press, Cambridge

    Book  MATH  Google Scholar 

  37. Kim S, Lu SY (1987) The functional similarity between Faxén relations and singularity solutions for fluid-fluid, fluid-solid and solid-solid dispersions. Int J Multiph Flow 13:837–844

    Article  MATH  Google Scholar 

  38. Kohr M, Pop I (2004) Viscous incompressible flow for low Reynolds numbers. WIT Press, Southampton

    MATH  Google Scholar 

  39. Pozrikidis C (1989) A singularity method for unsteady linearized flow. Phys Fluids A, Fluid Dyn 1:1508–1520

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Kim S, Karrila SJ (1991) Microhydrodynamics: Principles and selected applications. Butterworth-Heinemann, Boston

    Google Scholar 

  41. Howells ID (1974) Drag due to the motion of a newtonian fluid through a sparse random array of small fixed rigid objects. J Fluid Mech 64:449–475

    Article  ADS  MATH  Google Scholar 

  42. O’Neill ME, Bhatt BS (1991) Slow motion of a solid sphere in the presence of a naturally permeable surface. Q J Mech Appl Math 44:91–104

    Article  MATH  Google Scholar 

  43. Feng Z-G, Michaelides EE (1998) Motion of a permeable sphere at finite but small Reynolds numbers. Phys Fluids 10:1375–1383

    Article  ADS  Google Scholar 

  44. Roux CL (2009) Flow of fluids with pressure dependent viscosities in an orthogonal rheometer subject to slip boundary conditions. Meccanica 44:71–83

    Article  MathSciNet  MATH  Google Scholar 

  45. Lok YY, Pop I, Ingham DB (2010) Oblique stagnation slip flow of a micropolar fluid. Meccanica 45:187–198

    Article  MathSciNet  Google Scholar 

  46. Prakash J, Raja Sekhar GP, Kohr M (2011) Stokes flow of an assemblage of porous particles: stress jump condition. Z Angew Math Phys. doi:10.1007/s00033-011-0123-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Raja Sekhar.

Additional information

Dedicated to Professor S.D. Nigam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, J., Raja Sekhar, G.P. Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model. Meccanica 47, 1079–1095 (2012). https://doi.org/10.1007/s11012-011-9494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9494-1

Keywords

Navigation