Skip to main content
Log in

Stokes flow past a porous sphere using Brinkman's model

  • Brief Reports
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

A general non-axisymmetric Stokes flow past a porous sphere in a viscous, incompressible fluid is considered. The flow inside the sphere is governed by Brinkman's equations. A representation for velocity and pressure for the Brinkman's equations is suggested and a method of finding the flow quantities is given. Faxén's laws for drag and torque for the flow past a porous sphere are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. S. Beavers and D. D. Joseph,Boundary conditions at a naturally permeable wall, J. Fluid. Mech.30(1), 197–207 (1967).

    Google Scholar 

  2. H. C. Brinkman,A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles, Appl. Sci. Res.A1, 27–34 (1947).

    Google Scholar 

  3. K. Matsumoto and A. Suganuma,Settling velocity of a permeable model floc, Chem. Engng. Sci.32, 445–447 (1977).

    Google Scholar 

  4. P. Debye and A. M. Bueche,Intrinsic viscosity, diffusion and sedimentation rate of polymers in solution, J. Chem. Phys.16(6), 573–579 (1948).

    Google Scholar 

  5. B. U. Felderhof and J. M. Deutch,Frictional properties of dilute polymer solutions I, J. Chem. Phys.62, 2391–2397 (1975).

    Google Scholar 

  6. B. U. Felderhof and J. M. Deutch,Frictional properties of dilute polymer solutions II, J. Chem. Phys.62(6), 2398–2405 (1975).

    Google Scholar 

  7. B. U. Felderhof,Frictional properties of dilute polymer solutions III, Physica80A, 63–75 (1975).

    Google Scholar 

  8. B. U. Felderhof,Frictional properties of dilute polymer solutions IV, Physica80A, 172–188 (1975).

    Google Scholar 

  9. J. J. L. Higdon and M. Kojima,On the calculation of Stokes flow past porous particles, Int. J. Multiphase Flow7(6), 719–727 (1981).

    Google Scholar 

  10. Qin Yu and P. N. Kaloni,A cartesian tensor solution of the Brinkman equation, J. Engng. Math.22, 177–188 (1988).

    Google Scholar 

  11. D. Palaniappan, S. D. Nigam, T. Amaranath and R. Usha,Lamb's solution of Stokes equations: A sphere theorem, Quart. J. Mech. & Appl. Math.45(1), 47–56 (1992).

    Google Scholar 

  12. H. Faxén,Arkiv for Matematik. Astron. och. Fysik, Bd.18, 3 (1924).

    Google Scholar 

  13. Milton Abramovitz and Irene A. Stegun,Handbook of Mathematical Functions, Dover Publ. Inc., New York 1972, pp. 443–445.

    Google Scholar 

  14. D. Palaniappan, S. D. Nigam, T. Amaranath and R. Usha,A shear-free sphere theorem in Stokes flow, Mech. Res. Comm.17(3), 429–435 (1990).

    Google Scholar 

  15. G. I. Taylor,The viscosity of a fluid containing small drops of another fluid, Proc. Roy. Soc. (London)A138, 41–48 (1932).

    Google Scholar 

  16. H. Lamb,Hydrodynamics, 6th ed, Dover Publ., New York 1945, pp. 595–596.

    Google Scholar 

  17. Albert Einstein,Investigations on the Theory of Brownian Movement (Engl. transl.), Dover Publ. Inc., New York 1956, pp. 49–54.

    Google Scholar 

  18. G. K. Batchelor,An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, England 1967, pp. 246–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmavathi, B.S., Amaranath, T. & Nigam, S.D. Stokes flow past a porous sphere using Brinkman's model. Z. angew. Math. Phys. 44, 929–939 (1993). https://doi.org/10.1007/BF00942818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942818

Keywords

Navigation