Skip to main content
Log in

Altered glucose metabolism and its association with carbonic anhydrase 8 in Machado-Joseph Disease

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative disease. This disorder is caused by polyglutamine (polyQ)-containing mutant ataxin-3, which tends to misfold and aggregate in neuron cells. We previously demonstrated a protective function of carbonic anhydrase 8 (CA8) in MJD disease models and a decreased glycolytic activity associated with down-regulated CA8 in a human osteosarcoma (OS) cell model. Given that a reduction in body weight accompanied by gait and balance instability was observed in MJD patients and transgenic (Tg) mice, in this study, we aimed to examine whether metabolic defects are associated with MJD and whether CA8 expression is involved in metabolic dysfunction in MJD. Our data first showed that glucose uptake ability decreases in cells harboring mutant ataxin-3, but increases in cells overexpressing CA8. In addition, the expressions of glucose transporter 3 (GLUT3) and phosphofructokinase-1 (PFK1) were significantly decreased in the presence of mutant ataxin-3. Consistently, immunohistochemistry (IHC) showed that GLUT3 was less expressed in cerebella of aged MJD Tg mice, indicating that the dysfunction of GLUT3 may be associated with late-stage disease. On the other hand, transient down-regulation of CA8 revealed decreased expressions of GLUT3 and PFK1 in HEK293 cells harboring wild-type (WT) ataxin-3, but no further reduction of GLUT3 and PFK1 expressions were observed in HEK293 cells harboring mutant ataxin-3. Moreover, immunoprecipitation (IP) and immunofluorescence (IF) demonstrated that interactions exist between ataxin-3, CA8 and GLUT3 in MJD cellular and Tg models. These lines of evidence suggest that CA8 plays an important role in glucose metabolism and has different impacts on cells with or without mutant ataxin-3. Interestingly, the decreased relative abundance of Firmicutes/Bacteroidetes (F/B) ratio in the feces of aged MJD Tg mice coincided with weight loss and metabolic dysfunction in MJD. Taken together, our results are the first to demonstrate the effects of CA8 on glucose metabolism and its involvement in the metabolic defects in MJD disease. Further investigations will be required to clarify the underlying mechanisms for the metabolic defects associated with MJD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ATP:

Adenosine triphosphate

Bax:

Bcl-2-associated X

BMI:

Body Mass Index

CO2:

Carbon dioxide

CA8:

Carbonic anhydrase 8

CGNs:

Cerebellar granule neurons

DUB:

Deubiquitinating enzyme

DNA:

Deoxyribonucleic acid

ERAD:

Endoplasmic reticulum-associated degradation

EGFP:

Enhanced green fluorescent protein

F6P:

Fructose-6-phosphate

F1,6BP:

Fructose-1,6-bisphosphate

FBS:

Fetal bovine serum

F/B:

Firmicutes/Bacteroidetes

GLUT3:

Glucose transporter 3

GST:

Glutathione S-transferase

GAPDH:

Glyceraldehyde-3-phosphate-dehydrogenase

HRP:

Horseradish peroxidase

HD:

Huntington’s disease

IHC:

Immunohistochemistry

IP:

Immunoprecipitation

IF:

Immunofluorescence

IP3:

Inositol 1,4,5-trisphosphate

IP3R1:

Inositol 1,4,5 trisphosphate receptor type 1

MJD:

Machado–Joseph disease

MEM:

Minimum Essential Medium

2-NBDG:

2-[N-(7-nitrobenz-2-oxa1,3-diazol-4-yl)-amino]-2-deoxyglucose

NGS:

Normal goat serum

N.S.:

Non-significant

OS:

Osteosarcoma

PA:

Paraformaldehyde

PBS:

Phosphate buffered saline

PFK1:

Phosphofructokinase-1

polyQ:

Polyglutamine

PET:

Positron Emission Tomography

ROS:

Reactive oxygen species

shRNA:

Short hairpin RNA

SDS:

Sodium dodecyl sulfate

SCA3:

Spinocerebellar ataxia type 3

STS:

Staurosporine

TBP:

TATA-binding protein

Tg:

Transgenic

wdl:

Waddles

WT:

Wild-type

References

  • Aspatwar A, Tolvanen MEE, Ortutay C, Parkkila S (2010) Carbonic anhydrase related protein VIII and its role in neurodegeneration and cancer. Curr Pharm Des 16:3264–3276

    Article  CAS  PubMed  Google Scholar 

  • Besson MT, Alegria K, Garrido-Gerter P, Barros LF, Lievens JC (2015) Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS ONE 10:e0118765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bird ED, Gale JS, Spokes EG (1977) Huntington’s chorea: post mortem activity of enzymes involved in cerebral glucose metabolism. J Neurochem 29:539–545

    Article  CAS  PubMed  Google Scholar 

  • Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191

    PubMed  Google Scholar 

  • Cemal CK, Carroll CJ, Lawrence L, Lowrie MB, Ruddle P, Al-Mahdawi S, King RH, Pook MA, Huxley C, Chamberlain S (2002) YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet 11:1075–1094

    Article  CAS  PubMed  Google Scholar 

  • Cepeda-Prado E, Popp S, Khan U, Stefanov D, Rodriguez J, Menalled LB, Dow-Edwards D, Small SA, Moreno H (2012) R6/2 Huntington’s disease mice develop early and progressive abnormal brain metabolism and seizures. J Neurosci 32:6456–6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I (2008) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 28:12713–12724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi TH, Hsieh BY, Liang PS, Han TH, Hsieh M (2020) Expression and Functional Study of Single Mutations of Carbonic Anhydrase 8 in Neuronal Cells. Cell Mol Neurobiol. 41:1355–1371

  • Covarrubias-Pinto A, Moll P, Solis-Maldonado M, Acuna AI, Riveros A, Miro MP, Papic E, Beltran FA, Cepeda C, Concha II et al (2015) Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington’s disease. Free Radic Biol Med 89:1085–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cura AJ, Carruthers A (2012) Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2:863–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Doege H, Schurmann A, Bahrenberg G, Brauers A, Joost HG (2000) GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem 275:16275–16280

    Article  CAS  PubMed  Google Scholar 

  • Gamberino WC, Brennan WA (1994) Glucose transporter isoform expression in Huntington’s disease brain. J Neurochem 63:1392–1397

    Article  CAS  PubMed  Google Scholar 

  • Głuchowska K, Pliszka M, Szablewski L (2021) Expression of glucose transporters in human neurodegenerative diseases. Biochem Biophys Res Commun 540:8–15

    Article  PubMed  CAS  Google Scholar 

  • Gomez O, Ballester-Lurbe B, Poch E, Mesonero JE, Terrado J (2010) Developmental regulation of glucose transporters GLUT3, GLUT4 and GLUT8 in the mouse cerebellar cortex. J Anat 217:616–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han MM, Zhu XY, Peng YF, Lin H, Liu DC, Li L (2019) The alterations of gut microbiota in mice with chronic pancreatitis. Ann Transl Med 7:464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota J, Ando H, Hamada K, Mikoshiba K (2003) Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J 372:435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holman GD (2020) Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflugers Arch 472:1155–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh M, Chang WH, Hsu CF, Nishimori I, Kuo CL, Minakuchi T (2013) Altered expression of carbonic anhydrase-related protein XI in neuronal cells expressing mutant ataxin-3. Cerebellum 12:338–349

    Article  CAS  PubMed  Google Scholar 

  • Hsieh M, Hsieh BY, Ma CY, Li YT, Liu CS, Lo CM (2019) Protective roles of carbonic anhydrase 8 in Machado-Joseph Disease. J Neurosci Res 97:1278–1297

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5:237–252

    Article  CAS  PubMed  Google Scholar 

  • Huang MS, Wang TK, Liu YW, Li YT, Chi TH, Chou CW, Hsieh M (2014) Roles of carbonic anhydrase 8 in neuronal cells and zebrafish. Biochim Biophys Acta 1840:2829–2842

    Article  CAS  PubMed  Google Scholar 

  • Hur EM, Park YS, Huh YH, Yoo SH, Woo KC, Choi BH, Kim KT (2005) Junctional membrane inositol 1,4,5-trisphosphate receptor complex coordinates sensitization of the silent EGF-induced Ca2+ signaling. J Cell Biol 169:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang S, Nelson JC, Bend EG, Rodriguez-Laureano L, Tueros FG, Cartagenova L, Underwood K, Jorgensen EM, Colon-Ramos DA (2016) Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron 90:278–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins CM, Yang J, Sims HF, Gross RW (2011) Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: a mechanism integrating glycolytic flux with lipid metabolism. J Biol Chem 286:11937–11950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Yan J, Zhao Y, Donahue LR, Beamer WG, Li X, Roe BA, Ledoux MS, Gu W (2005) Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 171:1239–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, KawaKami H, Nakamura S, Nishimura M, Akiguchi I et al (1994) CAG expansion in a novel gene fo Machado-Joseph disease at chromosome 14q32.1. Nat Genetic 8:221–228

    Article  CAS  Google Scholar 

  • Kaya N, Aldhalaan H, Al-Younes B, Colak D, Shuaib T, Al-Mohaileb F, Al-Sugair A, Nester M, Al-Yamani S, Al-Bakheet A et al (2011) Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. Am J Med Genet B Neuropsychiatr Genet 156B:826–834

    Article  PubMed  CAS  Google Scholar 

  • Koeppen AH (2018) The neuropathology of Spinocerebellar Ataxia Type 3/Machado-Joseph disease. Adv Exp Med Biol 1049:233–241

    Article  CAS  PubMed  Google Scholar 

  • Kong G, Cao KL, Judd LM, Li S, Renoir T, Hannan AJ (2020) Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 135:104268

    Article  CAS  PubMed  Google Scholar 

  • Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27:201–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Leenders KL, Frackowiak RS, Quinn N, Marsden CD (1986) Brain energy metabolism and dopaminergic function in Huntington’s disease measured in vivo using positron emission tomography. Mov Disord 1:69–77

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Li X, Ning G, Zhu S, Ma X, Liu X, Liu C, Huang M, Schmitt I, Wullner U et al (2016) The Machado-Joseph Disease Deubiquitinase Ataxin-3 regulates the stability and apoptotic function of p53. PLoS Biol 14:e2000733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JD, Sun W, Goldman S, Blekot S, Nielsen M et al (2015) Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun 6:6807

    Article  CAS  PubMed  Google Scholar 

  • McClory H, Williams D, Sapp E, Gatune LW, Wang P, DiFiglia M, Li X (2014) Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice. Acta Neuropathol Commun 2:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendonça N, França MC, Gonçalves AF, Januário C (2018) Clinical Features of Machado-Joseph Disease. Adv Exp Med Biol 1049:255–273

    Article  PubMed  CAS  Google Scholar 

  • Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nóbrega C, Simões AT, Duarte-Neves J, Duarte S, Vasconcelos-Ferreira A, Cunha-Santos J, Pereira D, Santana M, Cavadas C, de Almeida LP (2018) Molecular mechanisms and cellular pathways implicated in Machado-Joseph Disease pathogenesis. Adv Exp Med Biol 1049:349–367

    Article  PubMed  CAS  Google Scholar 

  • Oh M, Kim JS, Oh JS, Lee CS, Chung SJ (2017) Different subregional metabolism patterns in patients with cerebellar ataxia by 18F-fluorodeoxyglucose positron emission tomography. PLoS ONE 12:e0173275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paulson H (2012) Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol 103:437–449

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143:1457–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picaud SS, Muniz JR, Kramm A, Pilka ES, Kochan G, Oppermann U, Yue WW (2009) Crystal structure of human carbonic anhydrase-related protein VIII reveals the basis for catalytic silencing. Proteins 76:507–511

    Article  CAS  PubMed  Google Scholar 

  • Pragallapati S, Manyam R (2019) Glucose transporter 1 in health and disease. J Oral Maxillofac Pathol 23:443–449

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT et al (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754

    Article  CAS  PubMed  Google Scholar 

  • Riess O, Rub U, Pastore A, Bauer P, Schols L (2008) SCA3: neurological features, pathogenesis and animal models. Cerebellum 7:125–137

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Cueto C, Hernandez-Galvez M, Hillard CJ, Maciel P, Garcia-Garcia L, Valdeolivas S, Pozo MA, Ramos JA, Gomez-Ruiz M, Fernandez-Ruiz J (2016) Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3. Neuroscience 339:191–209

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Quiroga SA, Gonzalez-Moron D, Garretto N, Kauffman MA (2013). Huntington's disease masquerading as spinocerebellar ataxia. BMJ Case Rep. https://doi.org/10.1136/bcr-2012-008380

  • Saute JA, Silva AC, Souza GN, Russo AD, Donis KC, Vedolin L, Saraiva-Pereira ML, Portela LV, Jardim LB (2012) Body mass index is inversely correlated with the expanded CAG repeat length in SCA3/MJD patients. Cerebellum 11:771–774

    Article  CAS  PubMed  Google Scholar 

  • Schmitt I, Brattig T, Gossen M, Riess O (1997) Characterization of the rat spinocerebellar ataxia type 3 gene. Neurogenetics 1:103–112

    Article  CAS  PubMed  Google Scholar 

  • Seidel K, Siswanto S, Fredrich M, Bouzrou M, Brunt ER, van Leeuwen FW, Kampinga HH, Korf HW, Rub U, den Dunnen WF (2016) Polyglutamine aggregation in Huntington’s disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation. Neuropathol Appl Neurobiol 42:153–166

    Article  CAS  PubMed  Google Scholar 

  • Shimobayashi E, Wagner W, Kapfhammer JP (2016) Carbonic Anhydrase 8 expression in Purkinje cells is controlled by PKCγ activity and regulates Purkinje cell dendritic growth. Mol Neurobiol 53:5149–5160

    Article  CAS  PubMed  Google Scholar 

  • Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295:E242-253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjoblom B, Elleby B, Wallgren K, Jonsson BH, Lindskog S (1996) Two point mutations convert a catalytically inactive carbonic anhydrase-related protein (CARP) to an active enzyme. FEBS Lett 398:322–325

    Article  CAS  PubMed  Google Scholar 

  • Stan TL, Soylu-Kucharz R, Burleigh S, Prykhodko O, Cao L, Franke N, Sjögren M, Haikal C, Hållenius F, Björkqvist M (2020) Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington’s disease. Sci Rep 10:18270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szablewski L (2017) Glucose transporters in brain: In Health and in Alzheimer’s Disease. J Alzheimers Dis 55:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Thorens B, Mueckler M (2010) Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab 298:E141-145

    Article  CAS  PubMed  Google Scholar 

  • Tsai HC, Su HL, Huang CY, Fong YC, Hsu CJ, Tang CH (2014) CTGF increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating miR-519d. Oncotarget 5:3800–3812

    Article  PubMed  PubMed Central  Google Scholar 

  • Türkmen S, Guo G, Garshasbi M, Hoffmann K, Alshalah AJ, Mischung C, Kuss A, Humphrey N, Mundlos S, Robinson PN (2009) CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet 5:e1000487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uemura E, Greenlee HW (2006) Insulin regulates neuronal glucose uptake by promoting translocation of glucose transporter GLUT3. Exp Neurol 198:48–53

    Article  CAS  PubMed  Google Scholar 

  • Vannucci SJ (1994) Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J Neurochem 62:240–246

    Article  CAS  PubMed  Google Scholar 

  • Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW, Buurman WA, de Vos WM, Rensen SS (2013) Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring) 21:E607-615

    Article  CAS  Google Scholar 

  • Vittori A, Breda C, Repici M, Orth M, Roos RA, Outeiro TF, Giorgini F, Hollox EJ, Network, R.i.o.t.E.H.s.D. (2014) Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington’s disease. Hum Mol Genet 23:3129–3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TK, Lin YM, Lo CM, Tang CH, Teng CL, Chao WT, Wu MH, Liu CS, Hsieh M (2016) Oncogenic roles of carbonic anhydrase 8 in human osteosarcoma cells. Tumour Biol 37:7989–8005

    Article  CAS  PubMed  Google Scholar 

  • Weber G (1977) Enzymology of cancer cells (second of two parts). N Engl J Med 296:541–551

    Article  CAS  PubMed  Google Scholar 

  • Wullner U, Reimold M, Abele M, Burk K, Minnerop M, Dohmen BM, Machulla HJ, Bares R, Klockgether T (2005) Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol 62:1280–1285

    Article  PubMed  Google Scholar 

  • Yalcin A, Telang S, Clem B, Chesney J (2009) Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol 86:174–179

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Qian X, Qin C, Lin Y, Wu H, Chang L, Luo C, Zhu D (2016) Phosphofructokinase-1 negatively regulates neurogenesis from neural stem cells. Neurosci Bull 32:205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Pittman RN (2006) Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. Hum Mol Genet 15:2409–2420

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin L, Chen X (2020) The progress of gut microbiome research related to brain disorders. J Neuroinflammation 17:25

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National RNAi Core Facility at Academia Sinica in Taiwan for providing the RNAi reagents and related services; Drs. Shin‐Lan Hsu and Hsi‐Chi Lu for providing the cell lines; Drs. Henry Paulson and Toshikazu Suzuki for providing plasmids; Yu-Hsin Lin, Yi-Hua Tsai, and Yi-Ling Chiu for technical support.

Funding

This work was supported by grants from the Ministry of Science and Technology of the Republic of China (MOST105-2632-B-029-001; MOST105-2320-B-029-001-MY3; MOST109-2320-B-029-001).

Author information

Authors and Affiliations

Authors

Contributions

MH, GYL and CYM conceived and designed the study; GYL, CYM, LCK and HW performed the experiments; CYM, LCK, BYH and HW analyzed data; CYM and BYH provided statistical analysis; CSL and MH provided research resources; GYL, CYM, LCK, BYH, CSL and MH wrote and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mingli Hsieh.

Ethics declarations

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, GY., Ma, CY., Kuo, LC. et al. Altered glucose metabolism and its association with carbonic anhydrase 8 in Machado-Joseph Disease. Metab Brain Dis 37, 2103–2120 (2022). https://doi.org/10.1007/s11011-022-00994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-022-00994-7

Keywords

Navigation