Skip to main content

Advertisement

Log in

Exposure to leucine induces oxidative stress in the brain of zebrafish

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Maple Syrup Urine Disease (MSUD) is an autosomal recessive inherited disorder caused by a deficiency in the activity of the branched-chain alpha-ketoacid dehydrogenase complex leading to the accumulation of branched-chain amino acids (BCAA) leucine, isoleucine, and valine and their respective branched-chain α-ketoacids and corresponding hydroxy acids. Considering that Danio rerio, known as zebrafish, has been widely used as an experimental model in several research areas because it has favorable characteristics that complement other experimental models, this study aimed to evaluate oxidative stress parameters in zebrafish exposed to high levels of leucine (2 mM and 5 mM), in a model similar of MSUD. Twenty-four hours after exposure, the animals were euthanized, and the brain content dissected for analysis of oxidative stress parameters: thiobarbituric acid reactive substances (TBARS), 2′,7′-dichlorofluorescein oxidation assay (DCF); content of sulfhydryl, and superoxide dismutase (SOD) and catalase (CAT) activities. Animals exposed to 2 mM and 5 mM leucine showed an increase in the measurement of TBARS and decreased sulfhydryl content. There were no significant changes in DCF oxidation. In addition, animals exposed to 2 mM and 5 mM leucine were found to have decreased SOD activity and increased CAT activity. Based on these results, exposure of zebrafish to high doses of leucine can act as a promising animal model for MSUD, providing a better understanding of the toxicity profile of leucine exposure and its use in future investigations and strategies related to the pathophysiology of MSUD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  CAS  PubMed  Google Scholar 

  • Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M (2010) Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84

    Article  CAS  PubMed  Google Scholar 

  • Araújo P, Wassermann GF, Tallini K, Furlanetto V, Vargas CR, Wannmacher CM, Dutra-Filho CS, Wyse AT, Wajner M (2001) Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem Int 38:529–537

    Article  PubMed  Google Scholar 

  • Artuch R, Colomé C, Sierra C, Brandi N, Lambruschini N, Campistol J, Ugarte D, Vilaseca MA (2004) A longitudinal study of antioxidant status in phenylketonuric patients. Clin Biochem 37:198–203

    Article  CAS  PubMed  Google Scholar 

  • Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    CAS  PubMed  Google Scholar 

  • Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barschak AG, Sitta A, Deon M, de Oliveira MH, Haeser A, Dutra-Filho CS, Wajner M, Vargas CR (2006) Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 21:279–286

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Sitta A, Deon M, Busanello EN, Coelho DM, Cipriani F, Dutra-Filho CS, Giugliani R, Wajner M, Vargas CR (2009) Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clin Biochem 42:462–466

    Article  CAS  PubMed  Google Scholar 

  • Bayani U, Ajay VS, Paolo Z, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  Google Scholar 

  • Bridi R, Araldi J, Sgarbi MB, Testa CG, Durigon K, Wajner M, Dutra-Filho CS (2003) Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci 21:327–332

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Braun CA, Zorzi GK, Wannmacher CM, Wajner M, Lissi EG, Dutra-Filho CS (2005a) Alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20:155–167

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Latini A, Braum CA, Zorzi GK, Moacir W, Lissi E, Dutra-Filho CS (2005b) Evaluation of the mechanisms involved in leucine-induced oxidative damage in cerebral cortex of young rats. Free Radic Res 39:71–79

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Fontella FU, Pulrolnik V, Braun CA, Zorzi GK, Coelho D, Wajner M, Vargas CR, Dutra-Filho CS (2006) A chemically-induced acute model of maple syrup urine disease in rats for neurochemical studies. J Neurosci Methods 155:224–230

    Article  CAS  PubMed  Google Scholar 

  • Chuang DT, Shih VE (2001) Maple syrup urine disease (branched chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1971–2005

    Google Scholar 

  • Colomé C, Sierra C, Antònia Vilaseca M (2000) Congenital errors of metabolism: cause of oxidative stress? Med Clin (barc) 115:111–117

    Article  Google Scholar 

  • Danner DJ, Lemmon SK, Besharse JC, Elsas LJ 2nd (1979) Purification and characterization of branched chain alpha-ketoacid dehydrogenase from bovine liver mitochondria. J Biol Chem 254:5522–5526

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  • Fontella FU, Gassen E, Pulrolnik V, Wannmacher CM, Klein AB, Wajner M, Dutra-Filho CS (2002) Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metab Brain Dis 17:47–54

    Article  CAS  PubMed  Google Scholar 

  • Friedrich T, Lambert AM, Masino MA, Downes GB (2012) Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease. Dis Model Mech 5:248–258

    Article  CAS  PubMed  Google Scholar 

  • Froehlicher M, Liedtke A, Groh KJ, Neuhauss SC, Segner H, Eggen RI (2009) Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol 95:307–319

    Article  CAS  PubMed  Google Scholar 

  • Funchal C, Latini A, Jacques-Silva MC, Dos Santos AQ, Buzin L, Gottfried C, Wajner M, Pessoa-Pureur R (2006) Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Int 49:640–650

    Article  CAS  PubMed  Google Scholar 

  • Gemelli T, de Andrade RB, Rojas DB, Bonorino NF, Mazzola PN, Tortorelli LS, Funchal C, Filho CS, Wannmacher CM (2013) Effects of β-alanine administration on selected parameters of oxidative stress and phosphoryltransfer network in cerebral cortex and cerebellum of rats. Mol Cell Biochem 380:161–170

    Article  CAS  PubMed  Google Scholar 

  • Gjedde A, Crone C (1983) Biochemical modulation of blood-brain barrier permeability. Acta Neuropathol Suppl 8:59–74

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargreaves KM, Pardridge WM (1988) Neutral amino acid transport at the human blood-brain barrier. J Biol Chem 263:19392–19397

    Article  CAS  PubMed  Google Scholar 

  • Homanics GE, Skvorak K, Ferguson C, Watkins S, Paul HS (2006) Production and characterization of murine models of classic and intermediate maple syrup urine disease. BMC Med Genet 7:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  • Lipinski B (2011) Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev 2011:809696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    Article  CAS  PubMed  Google Scholar 

  • MacRae C, Peterson R (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14:721–731

    Article  CAS  PubMed  Google Scholar 

  • Menkes JH, Hurst PL, Craig JM (1954) A new syndrome: Progressive familial infantile cerebral dysfunction associated with an unusual urinary substance. Pediatrics 14:462–567

  • Mescka CP, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, Regla Vargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28

    Article  CAS  PubMed  Google Scholar 

  • Mescka CP, Wayhs CA, Vanzin CS, Biancini GB, Guerreiro G, Manfredini V, Souza C, Wajner M, Dutra-Filho CS, Vargas CR (2013) Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci 31:21–24

    Article  CAS  PubMed  Google Scholar 

  • Mescka CP, Rosa AP, Schirmbeck G, da Rosa TH, Catarino F, de Souza LO, Guerreiro G, Sitta A, Vargas CR, Dutra-Filho CS (2016) L-carnitine prevents oxidative stress in the brains of rats subjected to a chemically induced chronic model of MSUD. Mol Neurobiol 53:6007–6017

    Article  CAS  PubMed  Google Scholar 

  • Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI (2002) Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics 109:999–1008

    Article  PubMed  Google Scholar 

  • Rieger E, de Franceschi ID, Preissler T, Wannmacher CMD (2017) Neuroprotective effect of creatine and pyruvate on enzyme activities of phosphoryl transfer network and oxidative stress alterations caused by leucine administration in Wistar rats. Neurotox Res 32:575–584

    Article  CAS  PubMed  Google Scholar 

  • Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaini G, Tonon T, de Souza CFM, Schuk PF, Ferreira GC, Neto JS, Amorin T, Schwartz IVD, Streck EL (2017) Serum markers of neurodegeneration in maple syrup urine disease. Mol Neurobiol 54:5709–5719

    Article  CAS  PubMed  Google Scholar 

  • Scaini G, Tonon T, Moura de Souza CF, Schuck PF, Ferreira GC, Quevedo J, Neto JS, Amorim T, Camelo JS Jr, Margutti AVB, Hencke Tresbach R, Sperb-Ludwig F, Boy R, de Medeiros PFV, Schwartz IVD, Streck EL (2018) Evaluation of plasma biomarkers of inflammation in patients with maple syrup urine disease. J Inherit Metab Dis

  • Schonberger S, Schweiger B, Schwahn B, Schwarz M, Wendel U (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75

    Article  CAS  PubMed  Google Scholar 

  • Snyderman SE, Norton PM, Roitman E, Holt LE Jr (1964) Maple syrup urine disease, with particular reference to dietotherapy. Pediatrics 34:454–472

    Article  CAS  PubMed  Google Scholar 

  • Taschetto L, Scaini G, Zapelini HG, Ramos ÂC, Strapazzon G, Andrade VM, Réus GZ, Michels M, Dal-Pizzol F, Quevedo J, Schuck PF, Ferreira GC, Streck EL (2017) Acute and long-term effects of intracerebroventricular administration of α-ketoisocaproic acid on oxidative stress parameters and cognitive and noncognitive behaviors. Metab Brain Dis 32:1507–1518

    Article  CAS  PubMed  Google Scholar 

  • Treacy E, Clow CL, Reade TR, Chitayat D, Mamer OA, Scriver CR (1992) Maple syrup urine disease: interrelations between branched-chain amino-, oxo- and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J Inherit Metab Dis 15:121–135

    Article  CAS  PubMed  Google Scholar 

  • Vascotto SG, Beckham Y, Kelly GM (1997) The zebrafish’s swim to fame as an experimental model in biology. Biochem Cell Biol 75:479–485

    Article  CAS  PubMed  Google Scholar 

  • Wessler LB, Farias HR, Ronsani JF, Candiotto G, Dos Santos PCL, de Oliveira J, Rico EP, Streck EL (2019) Acute exposure to leucine modifies behavioral parameters and cholinergic activity in zebrafish. Int J Dev Neurosci 78:222–226

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Müller F, Strähle U (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28:245–253

    Article  CAS  PubMed  Google Scholar 

  • Zubarioglu T, Kiykim E, Cansever MS, Neselioglu S, Aktuglu-Zeybek C, Erel O (2017) Evaluation of dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in maple syrup urine disease patients under treatment. Metab Brain Dis 32:179–184

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) and Universidade do Extremo Sul Catarinense (UNESC).

Author information

Authors and Affiliations

Authors

Contributions

BZM, GS, EPR, JSG and ELS designed the study; LBW, MBD, ISL, GC, ROC, PCLS and CAT conducted the experiments and analyzed the data; BZM, GS, JSG and ELS prepared the manuscript; GS and ELS performed the analysis of the manuscript. All authors contributed to this research work and the development of the final manuscript.

Corresponding author

Correspondence to Emilio L. Streck.

Ethics declarations

Ethics approval

All the experimental procedures were carried according to the National Institutes of Health Guide for Care and Use of Laboratory Animal and approved by the Animal Care and Experimentation Committee of UNESC (protocol number 062/2018-1).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

All authors have reviewed the contents of the manuscript, have an approved of its contents and validated the accuracy of the data and they have no financial or personal conflicts of interest related to this work.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Medeiros, B.Z., Wessler, L.B., Duarte, M.B. et al. Exposure to leucine induces oxidative stress in the brain of zebrafish. Metab Brain Dis 37, 1155–1161 (2022). https://doi.org/10.1007/s11011-022-00934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-022-00934-5

Keywords

Navigation