Skip to main content
Log in

Neuroprotective Effect of Creatine and Pyruvate on Enzyme Activities of Phosphoryl Transfer Network and Oxidative Stress Alterations Caused by Leucine Administration in Wistar Rats

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Maple syrup urine disease is an autosomal metabolic disease caused by a deficiency of branched-chain α-keto acid dehydrogenase complex activity. In this disease occur the accumulation of the branched-chain amino acids leucine, isoleucine, and valine and their corresponding branched-chain α-keto acids in the tissues and body fluids. The affected patients may present psychomotor development delay and mental retardation. The pathophysiology of maple syrup urine disease is not entirely understood, but leucine seems to be the primary neurotoxic metabolite. Creatine and pyruvate are energetics and antioxidants substances. In this study, we investigated the effects of leucine administration and co-administration of creatine plus pyruvate on several parameters of oxidative stress and phosphoryl transfer network in cerebral cortex and hippocampus of Wistar rats treated from the 8th to the 21st postpartum day. Leucine induced oxidative stress and diminished the activities of pyruvate kinase, adenylate kinase, cytosolic and mitochondrial creatine kinase. Co-administration of creatine plus pyruvate prevented the alterations provoked by leucine administration on the oxidative stress and the enzymes of phosphoryltransfer network. These results indicate that chronic administration of leucine may stimulate oxidative stress and alters the enzymes of phosphoryltransfer network in the cerebral cortex and hippocampus of the rats. It is possible that these effects may contribute, along with other mechanisms, to the neurological dysfunction found in patients affected by maple syrup urine disease. In this case, it is possible that creatine plus pyruvate supplementation could benefit to the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:41–145

    Article  Google Scholar 

  • Aksenov M, Aksenova M, Butterfield AD, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527

    Article  CAS  PubMed  Google Scholar 

  • Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M (2010) Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84

    Article  CAS  PubMed  Google Scholar 

  • Andrade VS, Rojas DB, Oliveira L, Nunes ML, de Castro FL, Garcia C, Gemelli T, de Andrade RB, Wannmacher CM (2012) Creatine and pyruvate prevent behavioral and oxidative stress alterations caused by hypertryptophanemia in rats. Mol Cell Biochem 362:225–232

    Article  CAS  PubMed  Google Scholar 

  • de Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CM (2012) Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol Cell Biochem 364:253–261

    Article  CAS  PubMed  Google Scholar 

  • de Andrade RB, Gemelli T, Rojas DB, Bonorino NF, Costa B, Funchal C, Dutra-Filho CS, Wannmacher CM (2015) Creatine and pyruvate prevent the alterations caused by tyrosine on parameters of oxidative stress and enzymes activities of phosphoryltransfer network in cerebral cortex of wistar rats. Mol Neurobiol 51:1184–1194

    Article  PubMed  CAS  Google Scholar 

  • Andrae U, Singh J, Ziegler-Skylakakis K (1985) Pyruvate and related a-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol let 28:93–98

    Article  CAS  Google Scholar 

  • Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76:329–343

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013

    Article  CAS  PubMed  Google Scholar 

  • Artuch R, Colomé C, Sierra C, Brandi N, Lambruschini J, Urgate D, Vilaseca MA (2004) A longitudinal study of antioxidant status in Phenylketonuric patients. Clin Biochem 37:198–203

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Sitta A, Deon M, de Oliveira MH, Haeser A, Dutra-Filho CS, Wajner M, Vargas CR (2006) Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 21:279–286

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Marchesan C, Sitta A, Deon M, Giugliani R, Wajner M, Vargas CR (2008a) Maple syrup urine disease in treated patients: biochemical and oxidative stress profiles. Clin Biochem 41:317–324

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Sitta A, Deon M, Barden AT, Dutra-Filho CS, Wajner M, Vargas CR (2008b) Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis 23:71–80

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Sitta A, Deon M, Busanello EN, Coelho DM, Cipriani F, Dutra-Filho CS, Giugliani R, Wajner M, Vargas CR (2009) Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clin Biochem 42:462–466

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304

    Article  CAS  PubMed  Google Scholar 

  • Beal M (2011) Neuroprotective effects of creatine. Amino Acids 40:1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Bender A, Koch W, Elstner M, Schombacher Y, Bender J, Moeschl M, Gekeler F, Müller-Myhsok B, Gasser T, Tatsch K, Klopstock T (2006) Creatine supplementation in Parkinson disease: a placebo controlled randomized pilot trial. Neurology 67:1262–1264

    Article  CAS  PubMed  Google Scholar 

  • Bender A, Beckers J, Schneider I, Hölter SM, Haack T, Ruthsatz T, Vogt-Weisenhorn DM, Becker L, Genius J, Rujescu D, Irmler M, Mijalski T, Mader M, Quintanilla-Martinez L, Fuchs H, Gailus-Durner V, de Angelis MH, Wurst W, Schmidt J, Klopstock T (2008) Creatine improves health and survival of mice. Neurobiol Aging 29:1404–1411

    Article  CAS  PubMed  Google Scholar 

  • Berti SL, Nasi GM, Garcia C, Castro FL, Nunes ML, Rojas DB, Moraes TB, Dutra-Filho CS, Wannmacher CM (2012) Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis 27:79–89

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ, Wallimann TW (2000) Protective effect of the energy precursor creatine against toxicity of glutamate and betaamyloid in rat hippocampal neurons. J Neurochem 74:1968–1978

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Araldi J, Sgarbi MB, Testa CG, Durigon K, Wajner M, Dutra-Filho CS (2003) Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Devl Neuroscience 21:327–332

    Article  CAS  Google Scholar 

  • Bridi R, Latini A, Braun CA, Zorzi GK, Wajner M, Lissi EG, Dutra-Filho CS (2005) Evaluation of the mechanisms involved in leucine induced oxidative damage in cerebral cortex of young rats. Free Radic res 39:71–79

    Article  CAS  PubMed  Google Scholar 

  • Burlacu A, Jinga V, Gafencu AV, Simionescu M (2001) Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue Res 306:409–416

    Article  CAS  PubMed  Google Scholar 

  • Change B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    Google Scholar 

  • Chaturvedi RK, Beal MF (2008) Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 1147:395–412

  • Chuang DT, Shih VE (2001) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Cornelio AR, Rodrigues V Jr, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2004) Tryptophan reduces creatine kinase activity in the brain cortex of rats. Int J Dev Neurosci 22:95–101

    Article  CAS  PubMed  Google Scholar 

  • Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21:111–116

    Article  CAS  PubMed  Google Scholar 

  • Das UN (2006) Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med Sci Monit 12:79–84

    Google Scholar 

  • Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17:9060–9067

    CAS  PubMed  Google Scholar 

  • Dos Reis EA, Rieger E, de Souza SS, Rasia-Filho AA, Wannmacher CM (2013) Effects of a co-treatment with pyruvate and creatine on dendritic spines in rat hippocampus and posterodorsal medial amygdala in a phenylketonuria animal model. Metab Brain dis 28:509–517

    Article  PubMed  CAS  Google Scholar 

  • Dzeja PP, Terzic A (1998) Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB j 12:523–529

    CAS  PubMed  Google Scholar 

  • Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047

    Article  CAS  PubMed  Google Scholar 

  • Dzeja PP, Vitkevicius KT, Redfied MM, Burnett JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circ Res 84:1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Dzeja PP, Redfield MM, Burnett JC, Terzic A (2000) Failing energetics in failing heats. Curr Cardiol rep 2:212–217

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Method Enzymol 186:407–421

    Article  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Dutra-Filho CS, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Characterization of the inhibition of pyruvate kinase caused by phenylalanine and phenylpyruvate in rat brain cortex. Brain Res 968:199–205

    Article  CAS  PubMed  Google Scholar 

  • Feksa LR, Cornelio A, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CM (2004) Inhibition of pyruvate kinase activity by cystine in brain cortex of rats. Brain Res 1012:93–100

    Article  CAS  PubMed  Google Scholar 

  • Feksa LR, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2005) The effects of the interactions between amino acids on pyruvate kinase activity from the brain cortex of young rats. Int J Dev Neurosci 23:509–514

    Article  CAS  PubMed  Google Scholar 

  • Feksa LR, Latini A, Rech VC, Feksa PB, Koch GD, Amaral MF, Leipnitz G, Dutra-Filho CS, Wajner M, Wannmacher CM (2008) Tryptophan administration induces oxidative stress in brain cortex of rats. Metab Brain Dis 23:221–233

    Article  CAS  PubMed  Google Scholar 

  • Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20:4389–4397

    CAS  PubMed  Google Scholar 

  • Figueiredo VC, Feksa LR, Wannmacher CM (2009) Cysteamine prevents inhibition of adenylate kinase caused by cysteine in rat brain cortex. Metab Brain Dis 24:373–381

    Article  CAS  PubMed  Google Scholar 

  • Fleck RMM, Rodrigues-Junior V, Giacomazzi J, Parissoto D, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2005) Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochem Int 46:391–397

    Article  CAS  PubMed  Google Scholar 

  • de Franceschi ID, Rieger E, Vargas AP, Rojas DB, Campos AG, Rech VC, Feksa LR, Wannmacher CM (2013) Effect of leucine administration to female rats during pregnancy and lactation on oxidative stress and enzymes activities of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Neurochem Res 38:632–643

    Article  PubMed  CAS  Google Scholar 

  • Gemelli T, de Andrade RB, Rojas DB, Bonorino NF, Mazzola PN, Tortorelli LS, Funchal C, Dutra-Filho CS, Wannmacher CM (2013) Effect of β-alanine administration on selected parameters of oxidative stress and phosphoryltransfer network in cerebral cortex and cerebellum of rats. Mol Cell Biochem 380:161–170

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HF (1984) Redox control of enzyme activities by thiol/disulfide exchange. Method Enzymol 107:330–351

    Article  CAS  Google Scholar 

  • Guerreiro G, Mescka CP, Sitta A, Donida B, Marchetti D, Hammerschmidt T, Faverzani J, Coelho DM, Wajner M, Dutra-Filho CS, Vargas CR (2015) Urinary biomarkers of oxidative damage in maple syrup urine disease: the L-carnitine role. Int J Dev Neurosci 42:10–14

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2013) The antioxidant paradox: less paradoxical now? Br J Clin Pharmacol 75:637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1996) Oxygen radicals and nervous system. Trends Neurosci 8:22–26

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radical in biology and medicine. In: Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death, 4th edn. Oxford University Press, Oxford, pp 188–276

    Google Scholar 

  • Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, Fifth edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hayashi M, Miyata R, Tanuma N (2012) Oxidative stress in developmental brain disorders. Adv Exp Med Biol 724:278–290

    Article  CAS  PubMed  Google Scholar 

  • Holtzman D, Togliatti A, Khait I, Jensen F (1998) Creatine increases survival and suppresses seizures in the hypoxic immature rat. Pediatr Res 44:410–414

    Article  CAS  PubMed  Google Scholar 

  • Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  CAS  PubMed  Google Scholar 

  • Jagtap JC, Chandele A, Chopde BA, Shastry P (2003) Sodium pyruvate protects against H2O2 mediated apoptosis in human neuroblastoma cell line-SK-N-MC. J Chem Neuroanat 26:109–118

    Article  CAS  PubMed  Google Scholar 

  • Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Costabeber E, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Proline reduces creatine kinase activity in the brain cortex of rats. Neurochem Res 28:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Yu YM, Kim SW, Lee JK (2005) Anti-inflammatory mechanism is involved in ethyl pyruvate-mediated efficacious neuroprotection in the postischemic brain. Brain Res 1060:188–192

    Article  CAS  PubMed  Google Scholar 

  • Klein AM, Ferrante RJ (2007) The neuroprotective role of creatine. Subcell Biochem 46:205–243

    Article  PubMed  Google Scholar 

  • Koga Y, Povalko N, Katayama K, Kakimoto N, Matsuishi T, Naito E, Tanaka M (2012) Beneficial effect of pyruvate therapy on Leigh syndrome due to a novel mutation in PDH E1α gene. Brain Dev 34:87–91

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52

    Article  CAS  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 20,70-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  • Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough N, Farr AL, Randal RJ (1951) Protein measurementwith a Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59

    Article  CAS  Google Scholar 

  • Macedo LGRP, Carvalho-Silva M, Ferreira GK, Vieira JS, Olegário N, Gonçalves RC, Vuolo FS, Ferreira GC, Schuck PF, Dal-Pizzol F, Streck EL (2013) Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats. Neurochem Res 38:2625–2630

    Article  CAS  PubMed  Google Scholar 

  • Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press Inc, Boca Raton, pp 243–247

    Google Scholar 

  • Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18:156–163

    CAS  PubMed  Google Scholar 

  • Mazzio E, Soliman KFA (2003a) Pyruvic acid cytoprotection against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and hydrogen peroxide toxicities in vitro. Neurosci Lett 337:77–80

    Article  CAS  PubMed  Google Scholar 

  • Mazzio EA, Soliman KF (2003b) Cytoprotection of pyruvic acid and reduced beta-nicotinamide adenine dinucleotide against hydrogen peroxide toxicity in neuroblastoma cells. Neurochem Res 28:733–741

    Article  CAS  PubMed  Google Scholar 

  • Mescka C, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, Regla Vargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28

    Article  CAS  PubMed  Google Scholar 

  • Mescka CP, Wayhs CA, Vanzin CS (2013) Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci 31:21–24

    Article  CAS  PubMed  Google Scholar 

  • Mescka CP, Wayhs CA, Guerreiro G, Manfredini V, Dutra-Filho CS, Vargas CR (2014) Prevention of DNA damage by L-carnitine induced by metabolites accumulated in maple syrup urine disease in human peripheral leukocytes in vitro. Gene 548:294–298

    Article  CAS  PubMed  Google Scholar 

  • Mochel F, Durant B, Meng X, O’Callaghan J, Yu H, Brouillet E, Wheeler VC, Humbert S, Schiffmann R, Durr A (2012) Early alterations of brain cellular energy homeostasis in huntington disease models. J Biol Chem 287:1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee SK, Klaidman LK, Yasharel R, Adams JD (1997) Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol 330:27–34

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell-Tormey J, Nathan CF, Lanks K, DeBoer CJ, de la Harpe J (1987) Secretion of pyruvate. An antioxidant defense of mammalian cells. J Exp Med 165:500–514

    Article  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Owen L, Sunram-Lea SI (2011) Metabolic agents that enhance ATP can improve cognitive functioning: a review of the evidence for glucose, oxygen, pyruvate, creatine, and l-carnitina. Nutrients 3:735–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MA, Thoene JG (2005) Potential role of apoptosis in development of the cystinotic phenotype. Pediatr Nephrol 20:441–446

    Article  PubMed  Google Scholar 

  • Persky AM, Brazeau GA (2001) Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53:161–176

    CAS  PubMed  Google Scholar 

  • Pilla C, Cardozo RFO, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CM (2003) Effect of leucine administration on creatine kinase activity in rat brain. Metab Brain Dis 18:17–25

    Article  CAS  PubMed  Google Scholar 

  • Price NC, Cohn M, Schirmer RH (1975) Fluorescent and spin label probes of the environments of the sulfhydryl groups of porcine muscle adenylate kinase. J Biol Chem 250:644–652

    CAS  PubMed  Google Scholar 

  • Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol med 51:1302–1319

    Article  CAS  PubMed  Google Scholar 

  • Ryu JK, Choi HB, Mclarnon JB (2006) Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington’s disease. Neurosci 141:1835–1848

    Article  CAS  Google Scholar 

  • Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T (2006) Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 571:253–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartini S, Sestili P, Colombo E, Martinelli C, Bartolini F, Ciuffoli S, Lattanzi D, Sisti D, Cuppini R (2012) Creatine affects in vitro electrophysiological maturation of neuroblasts and protects them from oxidative stress. J Neurosci Res 90:435–446

    Article  CAS  PubMed  Google Scholar 

  • Schönberger S, Schweiger B, Schwahn B, Schwarz M, Wendel U (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75

    Article  PubMed  CAS  Google Scholar 

  • Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistell M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol med 40:837–849

    Article  CAS  PubMed  Google Scholar 

  • Skvorak KJ (2009) Animal models of maple syrup urine disease. J Inherit Metab Dis 32:229–246

    Article  CAS  PubMed  Google Scholar 

  • Snyderman SE, Norton PM, Roitman E (1964) Maple syrup urine disease with particular reference to diet terapy. Pediatrics 34:454–472

    CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free-radical mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  CAS  PubMed  Google Scholar 

  • Stockler S, Holzbach U, Hanenfeld F, Marquardt I, Helms G, Requart M, Hanicke W, Frahm J (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatric res 36:409–413

    Article  CAS  Google Scholar 

  • Strauss KA, Wardley B, Robinson D, Hendrickson C, Rider NL, Puffenberger EG, Shelmer D, Moser AB, Morton DH (2010) Classical maple syrup urine disease and brain development: principles of management and formula design. Mol Genet Metab 99:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarnopolsky MA (2007) Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell Biochem 46:183–204

    Article  PubMed  Google Scholar 

  • Tomimoto H, Yamamoto K, Homburger HA, Yanagihara T (1993) Immunoelectron microscopic investigation of creatine kinase BB isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 86:447–455

    CAS  PubMed  Google Scholar 

  • Valentini G, Chiarelli LR, Fortin R, Speranza ML, Galizzi A, Mattevi A (2000) The allosteric regulation of pyruvate kinase. J Biol Chem 275:18145–18152

    Article  CAS  PubMed  Google Scholar 

  • Vlassenko AG, Rundle MM, Raichle ME, Mintun MA (2006) Regulation of blood flow in activated human brain by cytosolic NADH/NAD ratio. Proc Natl Acad Sci U S a 103:1964–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating anergy demands: the ‘phosphocreatine cicuit’ for cellular energy homeostasis. Biochem J 281:21–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    Article  CAS  PubMed  Google Scholar 

  • Wendt S, Schlattner U, Wallimann T (2003) Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues. J Biol Chem 278:1125–30

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  • Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21:92–98

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Yang GY, Ying W, Kelly M, Hira K, James TL, Swanson RA, Litt L (2007) Pyruvate improves recovery after PARP-1-associated energy failure induced by oxidative stress in neonatal rat cerebro cortical slices. J Cereb Blood Flow Metab 27:304–315

    Article  CAS  PubMed  Google Scholar 

  • Zilberter M, Ivanov A, Ziyatdinova S, Mukhtarov M, Malkov A, Alpár A, Tortoriello G, Botting CH, Fülöp L, Osypov AA, Pitkänen A, Tanila H, Harkany T, Zilberter Y (2013) Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer’s disease. J Neurochem 125:157–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grants from, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) number 306928/2014-0, Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieger, E., de Franceschi, I.D., Preissler, T. et al. Neuroprotective Effect of Creatine and Pyruvate on Enzyme Activities of Phosphoryl Transfer Network and Oxidative Stress Alterations Caused by Leucine Administration in Wistar Rats. Neurotox Res 32, 575–584 (2017). https://doi.org/10.1007/s12640-017-9762-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9762-5

Keywords

Navigation