Skip to main content
Log in

The salvageable brain in acute ischemic stroke. The concept of a reverse mismatch: a mini-review

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Recent studies have opened a new era in treatment of acute ischemic stroke, enabling thrombolysis or thrombectomy far beyond the standard therapeutic “time windows”. These therapeutic protocols are built on various combinations of perfusion parameters, lesion volume, and neurological assessment. However, on top of the brain perfusion, there are other multiple factors that might modify the probability of neuronal apoptosis and necrosis following focal cerebral ischemia. We hypothesize that a diagnostic approach with measurements of selected biochemical parameters in the brain, in addition to those based solely on perfusion or MR diffusion, might allow for more personalized management protocols. Moreover, some local processes in the brain, triggered by acute ischemia or its consequences other than hypoperfusion directly, like, for example, excitotoxicity, might lead to apoptosis of the cells in the brain localized also beyond the area of hypoperfusion. This phenomenon might be responsible for the expansion of the brain damage much beyond the initial perfusion deficit or beyond the initial diffusion (DWI) restriction area, reported for example in T2W or FLAIR MRI in some stroke patients who have no other reasons to deteriorate (a reverse DWI – T2W / FLAIR, a reverse perfusion – DWI, or a reverse DWI – DWI mismatch).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart R, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, Sarraj A, Kasner SE, Ansari SA, Yeatts SD, Hamilton S, Mlynash M, Heit JJ, Zaharchuk G, Kim S, Carrozzella J, Palesch YY, Demchuk AM, Bammer R, Lavori PW, Broderick JP, Lansberg MG, DEFUSE 3 Investigators (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378:708–718

    Article  Google Scholar 

  • Amantea D, Bagetta G (2017) Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance. Curr Opin Pharmacol 35:111–119

    Article  CAS  Google Scholar 

  • Anderson CD, Biffi A, Nalls MA et al (2013) Common variants within oxidative phosphorylation genes influence risk of ischemic stroke and intracerebral hemorrhage. Stroke 44:612–619

    Article  CAS  Google Scholar 

  • Ao LY, Yan YY, Zhou L, Li CY, Li WT, Fang WR, Li YM (2018) Immune cells after ischemic stroke onset: roles, migration, and target intervention. J Mol Neurosci 66:342–355

    Article  CAS  Google Scholar 

  • Baron JC, Yamauchi H, Fujioka M, Endres M (2014) Selective neuronal loss in ischemic stroke and cerebrovascular disease. J Cereb Blood Flow Metab 34:2–18

    Article  Google Scholar 

  • Biffi A, Sabuncu MR, Desikan RS et al (2014) Genetic variation of oxidative phosphorylation genes in stroke and Alzheimer’s disease. Neurobiol Aging 35:1956.e1–1956.e8

    Article  CAS  Google Scholar 

  • Broughton BRS, Reutens DC, Sobey C (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339

    Article  Google Scholar 

  • Chan SL, Sweet JG, Bishop N, Cipolla MJ (2016) Pial collateral reactivity during hypertension and aging: understanding the function of collaterals for stroke therapy. Stroke 47:1618–1625

    Article  Google Scholar 

  • Díaz-Maroto Cicuéndez I, Fernández-Díaz E, García-García J et al (2017) The UCP2-866G/A polymorphism could be considered as a genetic marker of different functional prognosis in ischemic stroke after recanalization. NeuroMolecular Med 19:571–578

    Article  Google Scholar 

  • Fedorovich SV, Waseem TV (2018) Metabolic regulation of synaptic activity. Rev Neurosci 29:825–835

    Article  CAS  Google Scholar 

  • Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L, Wang HF, Shi JQ, Gao L, Qin H, Zhang YD, Tan L (2015) Ischemic preconditioning provides neuroprotection by induction of AMP-activated protein kinase-dependent autophagy in a rat model of ischemic stroke. Mol Neurobiol 51:220–229

    Article  CAS  Google Scholar 

  • Karaszewski B, Thomas RGR, Chappell FM et al (2010) Brain choline concentration. Early quantitative marker of ischemia and infarct expansion? Neurology 75:850–856

    Article  CAS  Google Scholar 

  • Lee JM, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Investig 106:723–731

    Article  CAS  Google Scholar 

  • Liao Y, Kristiansen AM, Oksvold CP et al (2010) Neuronal Ca2+-activated K+ channels limit brain infarction and promote survival. PLoS One 5(12):e15601

    Article  CAS  Google Scholar 

  • Ma H, Campbell BCV, Parsons MW et al (2019) Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med 380:1795–1803

    Article  Google Scholar 

  • Nogueira RG, Jadhav AP, Haussen DC et al (2017) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378:11–21

    Article  Google Scholar 

  • Shimosegawa E, Hatazawa J, Ibaraki M et al (2005) Metabolic penumbra of acute brain infarction: a correlation with infarct growth. Ann Neurol 57:495–450

    Article  Google Scholar 

  • Stevens SL, Vartanian KB, Stenzel-Poore MP (2014) Reprogramming the response to stroke by preconditioning. Stroke 45:2527–2531

    Article  Google Scholar 

  • Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, Cheripelli B, Cho TH, Fazekas F, Fiehler J, Ford I, Galinovic I, Gellissen S, Golsari A, Gregori J, Günther M, Guibernau J, Häusler KG, Hennerici M, Kemmling A, Marstrand J, Modrau B, Neeb L, Perez de la Ossa N, Puig J, Ringleb P, Roy P, Scheel E, Schonewille W, Serena J, Sunaert S, Villringer K, Wouters A, Thijs V, Ebinger M, Endres M, Fiebach JB, Lemmens R, Muir KW, Nighoghossian N, Pedraza S, Gerloff C, WAKE-UP Investigators (2018) MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med 379:611–622

    Article  Google Scholar 

  • Turner RC, Dodson SC, Rosen CL, Huber JD (2013) The science of cerebral ischemia and the quest for neuroprotection: navigating past failure to future success. J Neurosurg 118:1072–1085

    Article  CAS  Google Scholar 

  • Wang SW, Liu Z, Shi ZS (2018a) Non-coding RNA in acute ischemic stroke: mechanisms, biomarkers and therapeutic targets. Cell Transplant 27:1763–1777

    Article  Google Scholar 

  • Wang P, Shao BZ, Deng Z et al (2018b) Autophagy in ischemic stroke. Prog Neurobiol 163-164:98–117

    Article  CAS  Google Scholar 

  • Zille M, Farr TD, Przesdzing I, Müller J, Sommer C, Dirnagl U, Wunder A (2012) Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab 32:213–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Karaszewski.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaszewski, B., Jabłoński, B. & Żukowicz, W. The salvageable brain in acute ischemic stroke. The concept of a reverse mismatch: a mini-review. Metab Brain Dis 35, 237–240 (2020). https://doi.org/10.1007/s11011-019-00517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00517-x

Keywords

Navigation